

The Drive & Control Company

SERVICE & SUPPORT

CONTRO

ROBOTICS > DRIVES > SYSTEMS

Wangara, WA +61 8 6314 1111 support@automation-control.com.au automation-control.com.au

Omega Modules OBB

Identification system for short product names

Short produ	ct name	Example:	0	В	в	-	085	-	ΝN	-	1
System	= Omega module										
Guideway	= Ball Rail System										
Drive	= Toothed B elt Drive										
Size	= 055 / 085 / 120					-					
5120	- 00070007120										
Version	= Standard model										
Concretion	- Product concretion 1									-	
Generation	= Product generation 1										

Short product name

Using the short product name, Rexroth linear axes can be identified according to their product family, size, version and product generation.

Changes/amendments at a glance

Catalog structure

- New catalog number
- New product designation
- Revised dimensional drawings
- "Delivery form" additional chapter
- "Calculation" expanded chapter
- "EasyHandling" additional chapter
- Additional chapters "Switches", "Extensions" and "Distributors"
- "Power cable chains" chapter deleted

Technical modifications

- Increase of the dynamic load capacities and moments
- Revised table structure of the tech. data tables and drive data
- Integration of new motor types (MSM)
- Technical details of clamping element (LKPS)
- Chapters "Operating conditions" and "Lubrication" revised
- "Parameterization" chapter amended
- Order example
- Query sheet

Omega modules OBB

Product overview			4
	Product description		4
	Load ratings and sizes		6
	Structural design		7
	Delivery form		9
Technical data	General technical data	Drive data	10
	Deflection		12
		Deflection charts	13
Calculations	Calculation principles	Mounting orientation HORIZONTAL	20
		Mounting orientation VERTICAL	23
	Calculation example	Mounting orientation HORIZONTAL	26
		Mounting orientation VERTICAL	28
Configuration and ordering	OBB-055	Configuration and ordering	30
		Dimensions	32
	OBB-085	Configuration and ordering	34
		Dimensions	36
	OBB-120	Configuration and ordering	38
		Dimensions	40
Attachments and accessories	Switch mounting – frame moves	(carriage fixed)	42
	Switch mounting – carriage move	es (frame fixed)	44
	Cable duct		46
	Socket and plug		47
	Switches		52
	Extension pieces		56
	Distributors		60
	Extensions for passive distributo	rs	62
	Combination examples		64
	Mounting		66
	Carriage with clamping element	Carriage	70
		Clamping element (LKPS)	70
	Attachment of additional devices	End plate for attachment	71
	Shock absorber		72
	IndraDyn S servo motors MSK		74
	IndraDyn S servo motors MSM		76
EasyHandling			78
Service and information	Operating conditions	Normal operating conditions	82
		Design notes	82
		Required and supplementary documentation	82
	Lubrication		83
	Documentation		83
	Parameterization		84
	Further information		85
	Ordering example OBB-085	Configuration and ordering	86
	Inquiry/order form		88

Product overview

Product description

Omega modules (OBB) with ball rail systems and toothed belt drive for travel speeds up to 5.0 m/s.

Omega modules are ready-to-install linear axes for any desired mounting orientation in freely configurable lengths up to 5500 mm.

Due to the design, Omega modules are particularly well suited for applications where the frame enters the working area.

Characteristic features:

- Extremely compact precision aluminum profile with integrated Rexroth ball rail system for optimal travel
- Carriage with one-point lubrication
- With locating holes in the carriage and on the end plates
 Driven with toothed belts for high dynamics and high travel
- speed
- Mountable switches
- Available complete with motor, controller and control unit
 With planetary gearbox (PG) or angular planetary gearbox
- (WPG) with different gear ratios
- Pneumatic clamping elements (optional)
- Extensive range of accessories available

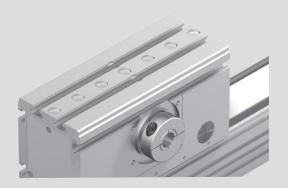
Sectors:

- Handling and assembly
- Electronics and semiconductor industry
- Automotive suppliers and OEMs
- Robotics and automation
- Special-purpose machines
- Packaging technology
- Building services
- Plastics processing
- Textile industry

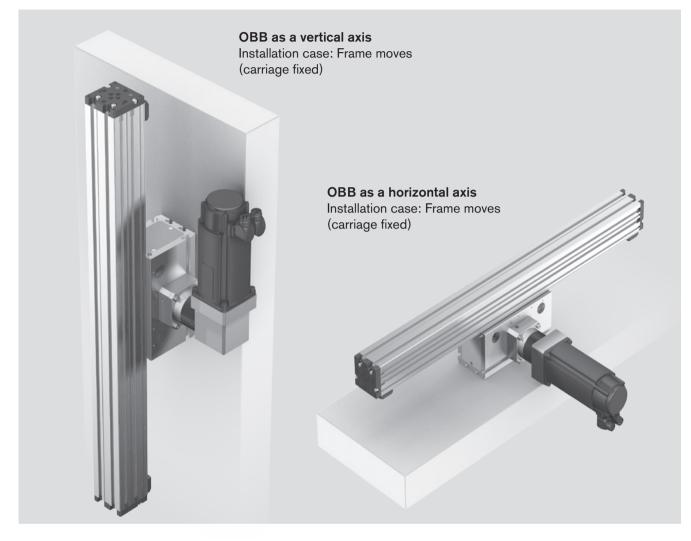
Application areas:

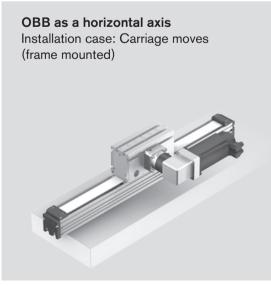
- Pick and place
- Handling systems
- Component assembly systems, palletizers
- Feed units for machine tools
- Testing and analysis systems
- Feed units in transfer lines
- Load shifters

For mounting, maintenance and start-up, see the Instructions.

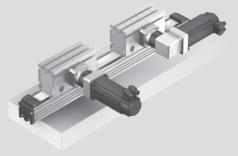

Mounting option

Fastening thread and locating holes


Versatile mounting options are provided by the fastening threads and locating holes on the two end plates of the frame.


Easy mounting thanks to locating holes in the carriage

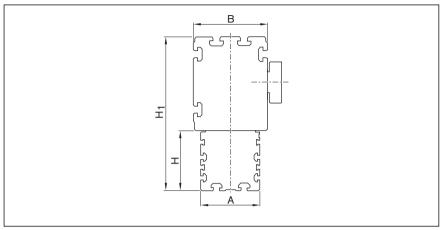
Frame HK moves


Carriage TT moves

On request:

OBB as horizontal axis with two carriages Installation case: Carriages move independently of each other (frame fixed). Representation (example): a carriage with planetary

gearbox, a carriage with angular gear.



Product overview

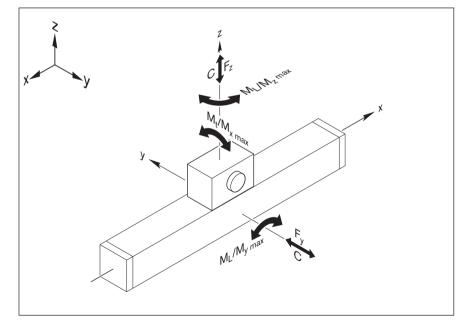
Load ratings and sizes

Note on dynamic load ratings and torques:

Determination of the dynamic load ratings and torques is based on a total travel of 100,000 m. Often only 50,000 m of total travel are actually stipulated. For comparison: Multiply values C, M_t and M_L by a factor of 1.26.

Size	Dimensions (mm)			Load ratings
	A/H	В	H ₁	L _{max}	С
					(N)
OBB-055	55	75	135		20 790
OBB-085	85	107	222	5 500	60 600
OBB-120	120	135	285		96 200

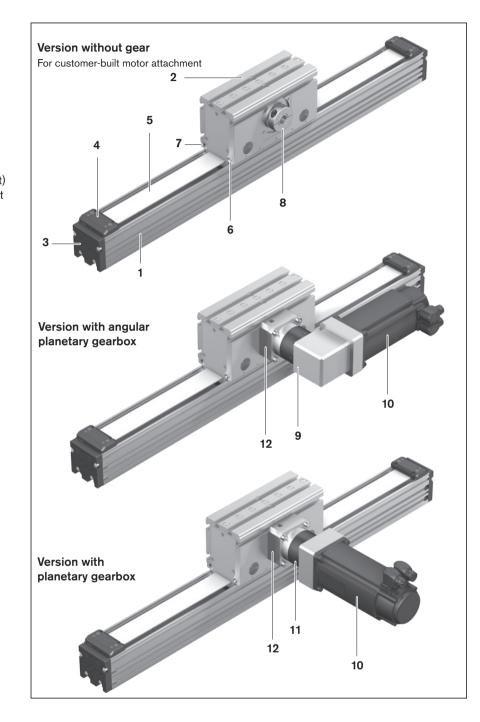
C = dynamic load rating


 L_{max} = maximum length of the linear motion system

Suitable loads (Recommended values based on experience)

As far as the desired service life is concerned, loads of up to approximately 20 % of the dynamic characteristic values (C, M_t , M_L) have proved acceptable.

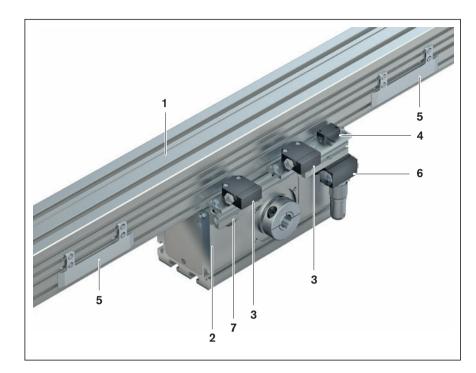
Here the following must not be exceeded:

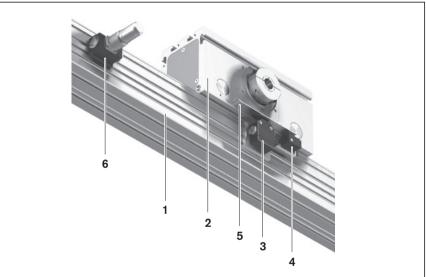

- The maximum permissible drive torque
- The maximum permissible load
- The maximum permissible travel speed
- The maximum permissible acceleration

Structural design

Design (without switches)

- 1 Frame
- 2 Carriage
- 3 End plate
- 4 Belt clamp
- 5 Toothed belt
- 6 Lube port (at both end faces)
- 7 Air port
- (for carriage with clamping element) 8 Clamping hub for motor attachment
- **9** Angular planetary gearbox (WPG)
- 10 Motor
- **11** Planetary gearbox (PG)
- 12 Mounting flange

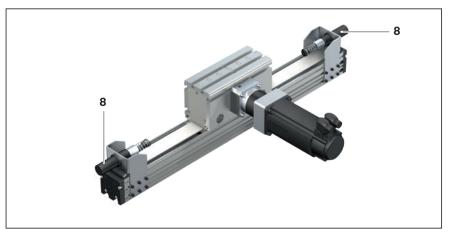



Product overview

Structural design

Attachments Frame moves (carriage fixed)

- 1 Frame
- 2 Carriage
- 3 Mechanical switches (with attachments)
- 4 Proximity switch (with attachments)
- 5 Control strip on the frame
- 6 Socket and plug
- 7 Switch mounting profile

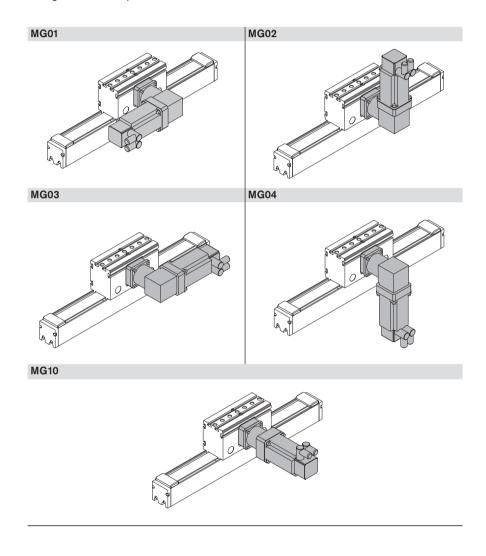

Carriage moves (frame fixed)

- 1 Frame
- 2 Carriage
- 3 Mechanical switch (with attachments)
- 4 Proximity switch (with attachments)
- **5** Switching angle (on the carriage)
- 6 Socket and plug

Accessories

8 Shock absorber

Shock absorbers are available as accessories and can be ordered separately with the relevant material number (see page 72).


Delivery form

Version

Motor attachment

Omega modules are delivered completely ready-mounted. In addition to the Omega module itself, the assembly also includes the motor attachment and motor options if they were included in the order.

If a combination of motor and motor attachment has been selected, then the attachment of the components is done as shown in the figure which also shows the location of the motor connector. The motor attachment version is selected or defined during the product configuration and is part of the order code.

Optional accessories like the cable duct, switch, switching angles and socket with plugs are included as loose parts in the delivery.

Omega modules are delivered with initial greasing. Information about lubricants can be found in the section "Lubrication".

The manual, safety information and a declaration of incorporation required for assembly and maintenance are included with each Omega module.

Accessories

Lubrication

Documentation

Technical data

General technical data

Observe the "Calculation" page 20 section!

Size	Carriage	Dynamic ch	aracteristi	c values	Maximun	n permiss	ible loads					
	L _{ca}	С	Mt	ML	M _{x max}	M _{y max}	M _{z max}	F _{y max}	F _{z max}	Clamping elei	ment	
		Guideway								Version	Holding force	
										Carriage		
	(mm)	(N)	(Nm)	(Nm)	(Nm)	(Nm)	(Nm)	(N)	(N)		(N)	
OBB-055	230	20 790	195	1 400	62	440	440	6 500	6 500	without	-	
										with	370	
OBB-085	260	60 600	860	4 610	280	1 500	1 500	19 760	19 760	without	-	
	308	60 600	860	6 100	280	1 960	1 960	19 760	19 760	with	690	
OBB-120	330	96 200	2360	10 390	776	3 424	3 424	31 700	31 700	without	-	
										with	1 200	

Drive data

Size	Gear type	i	М _Р ³⁾	u ³⁾	V _{max} ³⁾	M _{Rs} ³⁾	Moved part (carriage TT / frame HK)	k _{J fix} ³⁾	k _{J var} ³⁾	k _{ا m} 3)	d ₃	Belt type	F _{bp} ¹⁾	F _t perm ²⁾	a _{max}
			(Nm)	(mm/rev)	(m/s)	(Nm)		(kgmm²)	(kgmm)	(mm²)	(mm)		(N)	(N)	(m/s²)
OBB-055	without	1	12.0	165.00	5.00	1.10	TT	3 249.16	0.0000	689.59	52.52	25AT5	460	1 750	50
							НК	718.37	2.9825						
	PG	3	4.0	55.00	4.12	0.52	TT	458.80	0.0000	76.62					
							НК	93.32	0.3314						
		5	2.4	33.00	2.47	0.32	TT	168.11	0.0000	27.58					
							НК	36.53	0.1193						
		8	1.5	20.63	1.55	0.24	TT	69.12	0.0000	10.77					
							НК	17.72	0.0466						
	WPG	3	4.0	55.00	4.12	0.67	TT	531.20	0.0000	76.62					
							НК	104.42	0.3314						
		5	2.4	33.00	2.47	0.47	TT	201.28	0.0000	27.58					
							НК	47.63	0.1193						
		8	1.5	20.63	1.55	0.34	TT	88.84	0.0000	10.77					
							НК	28.82	0.0466						
OBB-085	without	1	40.0	255.00	5.00	3.00	TT	20 052.44	0.0000	1 647.14	81.17	50AT5	992	3 500	50
							НК	2 724.50	18.0527						
	PG	5	8.0	51.00	3.40	1.00	TT	1 077.70	0.0000	65.89					
							НК	153.98	0.7221						
		8	5.0	31.88	2.13	0.63	TT	442.40	0.0000	25.74					
							НК	81.57	0.2821						
	WPG	5	8.0	51.00	2.85	1.30	TT	1 271.13	0.0000	65.89					
							НК	195.88	0.7221						
		8	5.0	31.88	2.13	0.93	TT	543.49	0.0000	25.74					
							НК	123.47	0.2821						
OBB-120	without	1	154.0	340.00	5.00	6.00	TT	62 121.14	0.0000	2 928.43	108.23	70AT10	2 844	11 750	50
							НК	13 655.57	50.1933						
	PG	9	17.1	37.78	2.20	1.57	TT	1 310.92	0.0000	36.15					
							НК	430.59	0.6197						
	WPG	9	17.1	37.78	1.86	2.02	TT	1 838.85	0.0000	36.15					
							НК	741.59	0.6197						

1) Maximum power that can be transmitted through the engaging teeth that are in the belt pulley.

2) The permissible tensile load of the belt cross section (belt elasticity limit) is specified for better comparability. This value represents the load limit with respect to the plastic deformation and may not be used to determine the maximum permitted drive torque.

3) The specified values apply for the relevant combination shown (OBB without gear or OBB with gear) and are shown reduced based on the motor shaft. For information on the use of the values, see section "Calculation".

Length L _{ad²⁾}	S _{min} ¹⁾	L _{max}	Version	Mass carriag	e m _{ca} (kg)	Mass frame			
				Clamping ele		k _{g fix}	k _{g var}	ly	ا _z
(mm)	(mm)	(mm)		without	with	(kg)	(kg/mm)	(cm ⁴)	(cm ⁴)
130	110	5 500	Drive i=1	3.82	4.01	0.55	0.004	24	39
 166			with PG	5.13	5.32				
100			with WPG	5.93	6.12				
120	160	5 500	Drive i=1	9.56	11.25	1.05	0.011	148	244
150			with PG	13.38	15.07				
156			with WPG	15.68	17.37				
170	135	5 500	Drive i=1	17.70	18.45	3.08	0.017	664	725
			with PG	27.48	28.23				
206			with WPG	34.08	34.83				

1) Minimum required travel distance to ensure a reliable lubrication distribution, see "Operating conditions".

For short-stroke applications with travel distances $<\,s_{\rm min}$, please ask.

2) The dimension L_{ad} is required for the length calculation (see section "Configuration and ordering" for the relevant sizes)

PG =	=	planetary gearbox
WPG =	=	angular planetary gearbox
TT =	=	carriage
HK =	=	frame

Mass of the Omega module

Weight calculation does not include motor or switch.

 $m_{s} = k_{g \ fix} + k_{g \ var} \cdot L + m_{ca}$

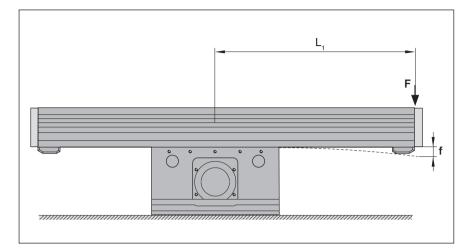
k _{g fix}	=	constant for fixed-length portion	n
, in the second s		of the mass	(kg)
k _{g var}	=	constant for the variable-length	
		portion of the mass	(kg/mm)
L	=	length of frame	(mm)
m _s	=	mass of the linear motion syste	m (kg)
m _{ca}	=	mass of the carriage	(kg)

Note

Values for the gear are not listed in the "Technical data" tables, as the gear is part of the linear motion system and is already taken into account in the technical values.

a _{max}	=	maximum permissible acceleration
C	=	dynamic load rating
da	=	diameter of belt pulley
F _{bp}	=	maximum belt drive transmission force
F _{t perm}	=	permissible cable pull strength
F _{y max} , F _{z max}	=	maximum permissible load in y- or z-direction
l _y ,l _z	=	planar moment of inertia
j, z	=	gear ratio
k _{l fix}	=	constant for fixed-length portion of mass
3114		moment of inertia
k _{l var}	=	constant for length-variable portion of mass
J Val		moment of inertia
k _{j m}	=	constant for mass-specific portion of mass
		moment of inertia
L _{ca}	=	carriage length
L _{ad}	=	additional length
L _{max}	=	maximum length of the linear motion system
M _t ,M _L	=	dynamic load moment
M _{x max} ,M _{y max} ,M _{z max}	=	maximum permitted torsional moment around
		the x-, y-, z-axis
ML	=	dynamic longitudinal moment load capacity
M _t	=	dynamic torsional moment load capacity
M _p	=	maximum permissible drive torque
M _{Rs}	=	frictional torque of system
		(on the drive journal)
m _{ca}	=	moved mass of carriage
s _{min}	=	minimum required travel distance
u	=	lead constant
v _{max}	=	maximum permissible travel speed

Technical data


Deflection

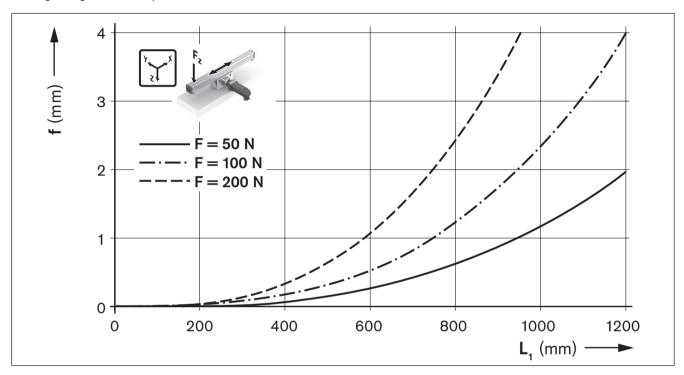
A special feature of Omega modules is the possibility to mount them by the carriage, which remains stationary while the frame moves.

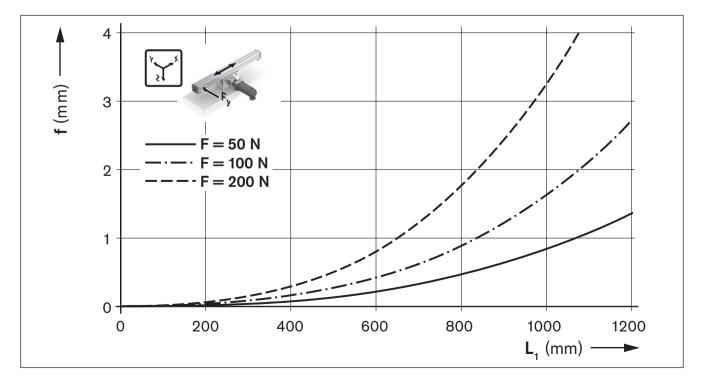
If a force acts on the overhanging frame in the area of the end plate (F) (direction of force transverse to the travel direction X), the frame undergoes a deflection (f) dependent on the length (L_1) (distance from the center of the carriage to the end of the frame).

When the OBB is used as a vertical axis in a portal, a deflection of the frame occurs due to the acceleration forces of the horizontal axes.

This deflection is reversible, i.e. deflection occurs for as long as the acceleration forces are acting.

Example

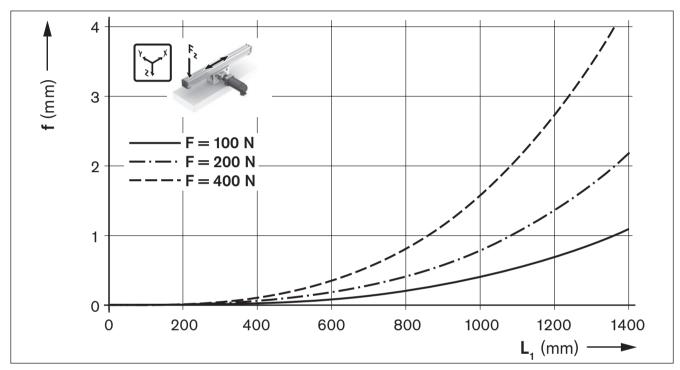

Omega module OBB-055:

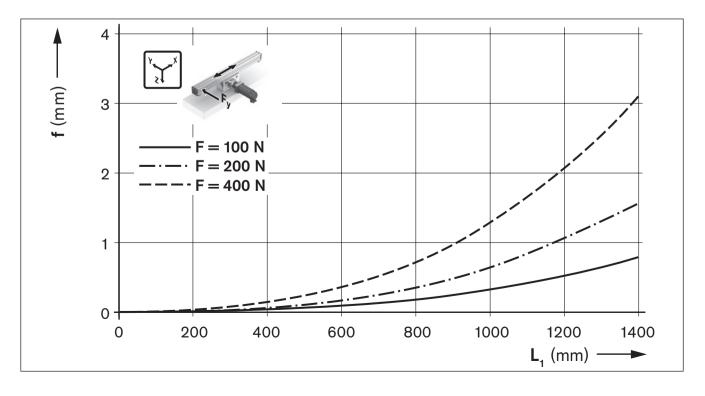

- $L_1 = 800 \text{ mm}$
- F = 100 N, force acting in z-direction
- f = 1.2 mm

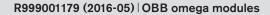
Deflection charts for loads from the z and y directions

OBB-055

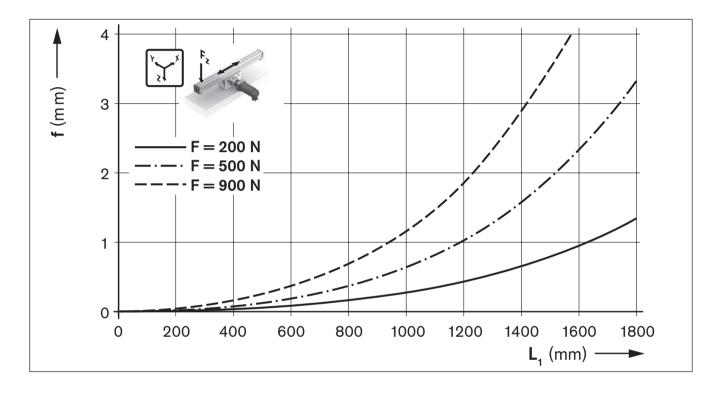
The following charts apply for a carriage fixed to the mounting base over the entire area (see section "Mounting by the carriage" on page 66). For larger lengths or loads, please ask.

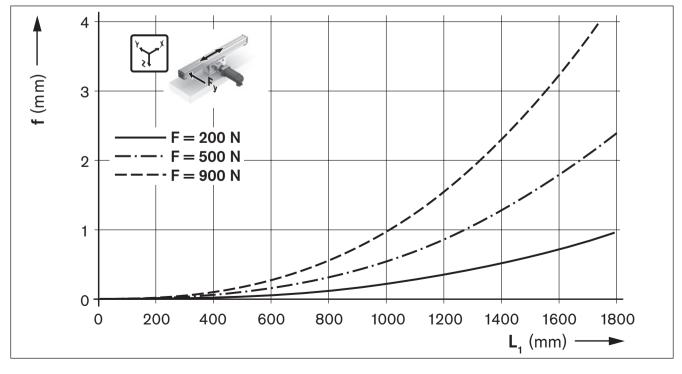

Technical data


Deflection

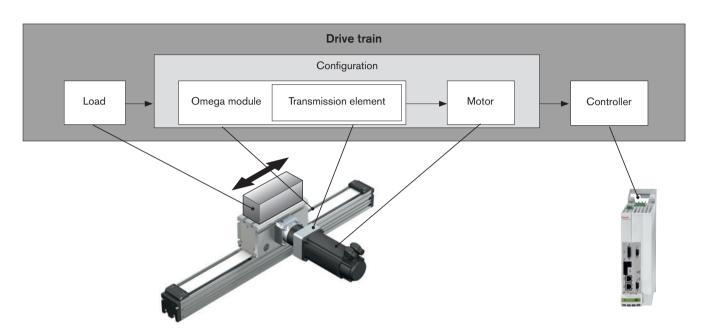

Deflection charts for loads from the z and y directions

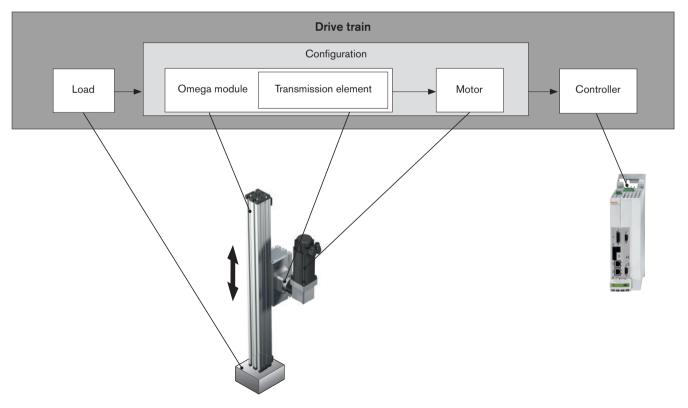
OBB-085


The following charts apply for a carriage fixed to the mounting base over the entire area (see section "Mounting by the carriage" on page 66). For larger lengths or loads, please ask.



OBB-120





Calculations

Calculation principles

The correct dimensioning and assessment of an application requires structured consideration of the drive train as a whole. The basic element of the drive train is the configuration – comprising the linear motion system, the transmission element (gear) and the motor – which can be ordered in that constellation in the catalog.

Maximum permissible load

When selecting linear motion systems, it is essential to consider the upper limits for permissible loads and forces, as specified in the section ""General technical data" on page 10. The values stated there are system-related. In other words, the upper. limits are determined not only by the load ratings of the bearing points but also include structural design and material-related considerations.

Conditions for combined loads:

 $\frac{|\mathsf{F}_{\mathsf{y}}|}{\mathsf{F}_{\mathsf{y}}\max} + \frac{|\mathsf{F}_{\mathsf{z}}|}{\mathsf{F}_{\mathsf{z}}\max} + \frac{|\mathsf{M}_{\mathsf{x}}|}{\mathsf{M}_{\mathsf{x}}\max} + \frac{|\mathsf{M}_{\mathsf{y}}|}{\mathsf{M}_{\mathsf{y}}\max} + \frac{|\mathsf{M}_{\mathsf{z}}|}{\mathsf{M}_{\mathsf{z}}\max}$ - <u><</u>1 F_{v max}

Service life

The service life of the rolling bearing points contained in a linear motion system can be calculated using the formulas given below.

The rolling bearing point that is relevant to the service life in a linear motion system with toothed belt drive is generally the linear guide.

The calculated service life specification for the linear motion system is determined by the service life value of the linear guide.

The linear guide of a linear motion system must bear the load, the side torgues of the

Service life of the linear guide

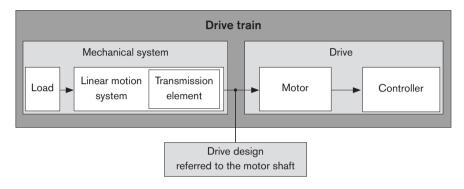
Combined equivalent load on bearing

of the linear guide:	$F_{comb} = F_y + F_z + C$	$\cdot \frac{ M_{X} }{M_{t}} + C \cdot \frac{ M_{y} }{M_{L}} + C \cdot \frac{ M_{z} }{M_{L}}$	
	C Fr	C = dynamic load rating $F_{comb} = combined equivalent load$	(N)
	A MUMP	on bearing	(N)
	Multin The State	F_y = force in y-direction	(N)
	, , , , , , , , , , , , , , , , , , ,	F_z = force in z-direction	(N)
	1 110	L = nominal life in meters	(m)
		$L_h = nominal life in hours$	(h)
	Mt/My max	M_L = dynamic longitudinal	
		moment load capacity	(Nm)
		M _t = dynamic torsional moment	(NI)
Nominal life		load capacity $M_x = torsional moment about$	(Nm)
Norminal me		the x-axis	(Nm)
Nominal life in meters:	()3	$M_v = torsional moment about$	
	$L = \left(\frac{C}{F_{comb}}\right)^3 \cdot 10^5$	the y-axis	(Nm)
		$M_z = $ torsional moment about	(,
		the z-axis	(Nm)
Nominal life in hours:	$L_{h} = \frac{L}{3 \ 600 \cdot v_{m}}$	v_m = average travel speed	(m/s)

motor attachment / motor and any processing forces.

Calculations

General


Drive design - Basic principles

When calculating the required size of drive, the drive train can be subdivided into the mechanical system and the drive itself.

The **mechanical system** includes the linear motion system component (including transmission element gear), as well as taking into account the load.

The electric **drive** is a motor-controller combination with the appropriate performance data. The sizing or dimensioning of the electric drive is done taking the motor shaft as a reference point.

When sizing the drive, limit values must be taken into account as well as basic values. The limit values are to be observed in order to avoid damaging the mechanical components.

Technical data and formula symbols for the mechanical system

The technical values for the linear motion system already include the relevant gear data and take into account the gear ratio. In other words, the corresponding maximum permissible limits for torque and speed, as well as the underlying friction torque and mass moment of inertia with respect to the motor shaft are reduced and can be taken directly from the tables (see section "Drive data").

The following technical data with the associated formula symbols are used when considering the basic mechanical system requirements in the design calculations for sizing the drive. The data listed in the table below can be found in the section "Technical data" or they are determined using the formulas described on the following pages.

	Mechanical system				
	Load	Linear motion system incl.			
		transmission element gear			
Weight moment (Nm)	M _g ⁵⁾	-			
Frictional torque (Nm)	- 4)	M _{Rs} ³⁾			
Mass moment of inertia (kgm ²)	J _t ¹⁾	J _{S²⁾}			
Max. permissible travel speed (m/s)	-	V _{max} ³⁾			
Max. permissible rotary speed (min ⁻¹)	-	n _P ¹⁾			
Max. permissible drive torque (Nm)	-	M _P ³⁾			

1) Determine the value using the appropriate formula

2) Length-dependent value, determined using the appropriate formula

3) Use the value from the table

4) Any additional process forces are to be taken into consideration as load moments

5) For vertical mounting position: Determine the value using the appropriate formula

Drive sizing referred to the motor shaft:

For the drive configuration, all the relevant design calculation values for the mechanical components contained in the drive train must be determined – and be expressed in terms of or reduced to – the motor shaft. In other words, for a combination of mechanical components within the drive train, this will result in one value for each of the following:

- Frictional torque M_R
- Mass moment of inertia J_{ex}
- Maximum permissible travel speed v_{mech} or maximum permissible rotary speed n_{mech}
- Maximum permissible drive torque Mmech

The determination of the values for the **mechanics** in the drive chain based on the reference point motor shaft differs with regard to the "frame moves" and "carriage moves" constellation and is compared with the relevant formula to highlight the differences. For better transparency, the installation orientations "**horizontal**" and "**vertical**" are addressed and outlined in different sections.

Calculations

Calculations

Mounting orientation HORIZONTAL

ne moves	Carriage moves	
12,		
130	o series	
		Califiage moves

Frictional torque M_R

The value for the frictional torque of the linear motion system already includes the friction for an appropriately configured gear unit and has been reduced with reference to the motor shaft.

	Frame moves	Carriage moves		
Frictional torque	$M_R = M_{Rs}$	$M_R = M_{Rs}$	 M_R = frictional torque at motor journal M_{Rs} = frictional torque of system 	(Nm) (Nm)

Mass moment of inertia ${\rm J}_{\rm ex}$

The constants used in the formulas $k_{J fix}$, $k_{J var}$ and $k_{J m}$ are determined dependent on the installation case "frame moves" or "carriage moves" and can be found in the table "Drive data" on page 10. The inertia of a configured gear is therefore already taken into account and reduced based on the motor shaft.

	Frame moves	Carriage moves	J _{ev} = mass moment of inertia
Mass moment of inertia of the mechanical system			of mechanical system (kgm ²)
of the meenanical system			J _s = mass moment of inertia of linear motion system
	$J_{ex} = J_s + J_t$	$J_{ex} = J_s + J_t$	(without external load) (kgm ²)
			J_t = translatory mass moment
			of inertia of external load referred to the drive journal (kgm ²)
Mass moment			$k_{J fix}$ = constant for fixed-length
of inertia of the			portion of mass
linear motion system	$\int_{s} = (k_{J \text{ fix}} + k_{J \text{ var}} \cdot L) \cdot 10^{-6}$	$\int_{S} = (k_{J \text{ fix}} + k_{J \text{ var}} \cdot L) \cdot 10^{-6}$	moment of inertia (kgmm ²)
	$J_{s} = (K_{j} f_{ix} + K_{j} v_{ar} + L) + 10$	$J_{s} = (K_{j} f_{ix} + K_{j} v_{ar} + L) + 10$	k _{J m} = constant for mass-specific portion of mass
			moment of inertia (mm ²)
Translatery			$k_{J var} = constant for variable-length$
Translatory mass moment of inertia			portion of mass
of the additional			moment of inertia (kgmm)
masses to be moved			L = length of the linear
masses to be moved	$J_t = m_{ex} \cdot k_{Jm} \cdot 10^{-6}$	$ J_t = (m_{ex} + m_m + m_{br}) \cdot k_{Jm} \cdot 10^{-6} $	
		<u>ا</u> لــــــــــــــــــــــــــــــــــــ	$m_{br} = mass of the holding brake$ (kg)
			$m_m = mass of motor$ (kg)
			m _{ex} = moved external load (kg)

Maximum permissible travel speed v_{mech} or maximum permissible rotary speed n_{mech}

The value for the maximum permissible travel speed of the linear motion system already includes the permissible rotary speed for any gear configured accordingly.

	Frame moves	Carriage moves	
Maximum permis- sible speed	v _{mech} = v _{max}	v _{mech} = v _{max}	 v_{max} = maximum permissible travel speed of the linear motion system (m/s) v_{mech} = maximum permissible travel speed of mechanical system (m/s) n_{mech} = maximum permissible rotary speed of mechanical system (min⁻¹)
Maximum permis- sible rotary speed	$n_{mech} = \frac{v_{mech} \cdot i \cdot 1 \ 000 \cdot 60}{\pi \cdot d_3}$	$n_{mech} = \frac{v_{mech} \cdot i \cdot 1 \ 000 \cdot 60}{\pi \cdot d_3}$	

Maximum permissible drive torque M_{mech}

The lowest (minimum) of all the values for permissible drive torque of all mechanical components contained in the drive train determines the maximum permissible drive torque of the mechanical system which has to be taken into consideration as the upper limit for the drive when sizing the motor.

	Frame moves	Carriage moves	
Maximum permissible drive torque	M _{mech} = M _p	M _{mech} = M _p	Mp = maximum permissible drive torque of the linear motion system (Nm) Mmech= maximum permissible drive torque of mechanical system (Nm)

 \triangle When considering the complete drive train (mechanical system + motor/controller), the maximum torque of the motor can lie below the maximum value for the mechanical system (Mmech) and thus limit the maximum permissible drive torque of the overall drive train.

If the maximum torque of the motor lies above the upper limit for the mechanical system (Mmech), the maximum motor torque must be limited to the permitted value for the mechanical system.

Rough guide for pre-selection of the motor

The following conditions can be used as a rough guide for pre-selecting the motor.

Condition 1

The speed of the motor must be the same as or higher than the rotary speed for the mechanical system (but not exceeding the maximum permissible value).

 $n_{max} \ge n_{mech}$

 $\begin{array}{ll} n_{max} &= maximum \mbox{ rotary speed of motor (min^{-1})} \\ n_{mech} &= maximum \mbox{ permissible rotary speed} \\ \mbox{ of mechanical system} & (min^{-1}) \end{array}$

Calculations

Calculations

Mounting orientation HORIZONTAL

Condition 2

Consideration of the ratio of mass moments of inertia of the mechanical system and the motor. The mass moment of inertia ratio serves as an indicator for the control performance of a motorcontroller combination. The mass moment of inertia of the motors is directly related to the motor size.

- = ratio of mass moments of inertia of drive train and motor (-) = mass moment of inertia of J_e
 - (kgm²) mechanical system
 - = mass moment of inertia, motor (kgm²) = mass moment of inertia,
 - motor brake (kgm²)

٧

≤ 6.0

 ≥ 1.5

For preselection, experience has shown that the following ratios will result in high control performance. These are not rigid limits, but values exceeding them will require closer consideration of the specific application.

Condition 3

Estimation of the ratio of the static load torque to the continuous torque of the motor.

The torque ratio must be smaller than or equal to the empirical value of 0.6. By looking at the required motor torque levels, this estimation roughly covers the dynamic characteristics which still have to be determined by plotting an exact movement profile.

$\frac{M_{stat}}{M_0} \le 0.6$	M_0 = continuous motor torque M_{stat} = static load torque	(Nm) (Nm)
--------------------------------	--	--------------

V

J__

Jh

Application area

Handling

Processing

	Frame moves	Carriage moves	
Static load torque			
	$M_{stat} = M_R$	$M_{stat} = M_R$	M_R = frictional torque at motor journal (Nm)

Any additional forces arising from the use of power cable chains, for example, are not included in the observation of the moving total mass and must be taken into account additionally in the calculation where applicable.

In the overview Configuration and ordering, users can put together standard configurations, including gears and motor, for the various linear motion system sizes by selecting the appropriate options. By fulfilling the three conditions it is possible to see whether a standard motor selected in a particular configuration will generally be of a suitable size for the specific application.

Precise drive design

Pre-selecting the motor according to this rough guide is no substitute for the precise design calculations required for the drive, where all moments/torques and speed levels are taken into account. For precise calculation of the electric drive, including consideration of the specific movement profile, please refer to the performance data in the catalogs IndraDrive Cs and IndraDrive C. When sizing the drive, the maximum permitted values for speed, drive torque and acceleration must not be exceeded, in order to avoid damaging the mechanical system!

Mounting orientation VERTICAL

	Frame moves	Carriage moves
Installation case		

Frictional torque M_R

The value for the frictional torque of the linear motion system already includes the friction for an appropriately configured gear unit and has been reduced with reference to the motor shaft.

	Frame moves	Carriage moves		
Frictional torque	$M_R = M_{Rs}$	$M_R = M_{Rs}$	M _R = frictional torque at motor journal M _{Rs} = frictional torque of system	(Nm) (Nm)

Mass moment of inertia ${\sf J}_{\sf ex}$

The constants used in the formulas $k_{J fix}$, $k_{J var}$ and $k_{J m}$ are determined dependent on the installation case "frame moves" or "carriage moves" and can be found in the table "Drive data" on page 10. The inertia of a configured gear is therefore already taken into account and reduced based on the motor shaft.

	Frame moves	Carriage moves	
Mass moment of inertia of the mechanical system	$\int_{e_x} = J_s + J_t$	$J_{ex} = J_s + J_t$	J _{ex} = mass moment of inertia of mechanical system (kgm²) J _s = mass moment of inertia of linear motion system
			(without external load) (kgm ²) J _t = translatory mass moment of inertia of external load
Mass moment of inertia of the linear motion system			referred to the drive journal (kgm ²) k _{J fix} = constant for fixed-length portion of mass
	$J_{s} = (k_{J \text{ fix}} + k_{J \text{ var}} \cdot L) \cdot 10^{-6}$	$J_{s} = (k_{J \text{ fix}} + k_{J \text{ var}} \cdot L) \cdot 10^{-6}$	k _{J m} = constant for mass-specific portion of mass
Translatory mass moment of inertia of the additional			moment of inertia (mm ²) k _{J var} = constant for variable-length portion of mass
masses to be moved	$J_t = m_{ex} \cdot k_{Jm} \cdot 10^{-6}$	$J_{t} = (m_{ex} + m_{m} + m_{br}) \cdot k_{Jm} \cdot 10^{-6}$	moment of inertia (kgmm) L = length of the linear motion system (mm)
			$m_{br} = mass of the holding brake$ (kg)

Calculations

Calculations

Mounting orientation VERTICAL

Maximum permissible travel speed v_{mech} or maximum permissible rotary speed n_{mech}

The value for the maximum permissible travel speed of the linear motion system already includes the permissible rotary speed for any gear configured accordingly.

	Frame moves	Carriage moves	
Maximum permis- sible speed	v _{mech} = v _{max}	v _{mech} = v _{max}	 v_{max} = maximum permissible travel speed of the linear motion system (m/s) v_{mech} = maximum permissible travel speed of mechanical system (m/s) n_{mech} = maximum permissible rotary speed of mechanical system (min⁻¹)
Maximum permis- sible rotary speed	$n_{mech} = \frac{v_{mech} \cdot i \cdot 1 \ 000 \cdot 60}{\pi \cdot d_3}$	$n_{mech} = \frac{v_{mech} \cdot i \cdot 1 \ 000 \cdot 60}{\pi \cdot d_3}$	$d_3 = diameter of belt pulley$ (mm)

Maximum permissible drive torque Mmech

The lowest (minimum) of all the values for permissible drive torque of all mechanical components contained in the drive train determines the maximum permissible drive torgue of the mechanical system which has to be taken into consideration as the upper limit for the drive when sizing the motor.

	Frame moves	Carriage moves	
Maximum permissible drive torque	M _{mech} = M _p	M _{mech} = M _p	Mp = maximum permissible drive torque of the linear motion system (Nm) Mmech= maximum permissible drive torque of mechanical system (Nm)

△ When considering the complete drive train (mechanical system + motor/controller), the maximum torque of the motor can lie below the maximum value for the mechanical system (M_{mech}) and thus limit the maximum permissible drive torque of the overall drive train.

If the maximum torque of the motor lies above the upper limit for the mechanical system (M_{mech}), the maximum motor torque must be limited to the permitted value for the mechanical system.

Rough guide for pre-selection of the motor

The following conditions can be used as a rough guide for pre-selecting the motor.

Condition 1

The speed of the motor must be the same as or higher than the rotary speed for the mechanical system (but not exceeding the maximum permissible value).

Condition 2

Consideration of the ratio of mass moments of inertia of the mechanical system and the motor. The mass moment of inertia ratio serves as an indicator for the control performance of a motorcontroller combination.

The mass moment of inertia of the motors is directly related to the motor size.

$$n_{max} \geq n_{mech}$$

 $n_{max} = maximum rotary speed of motor (min⁻¹)$ n_{mech} = maximum permissible rotary

speed of mechanical system (min-1)

$$V = \frac{J_{ex}}{J_m + J_{br}}$$

- = ratio of mass moments of inertia of drive train and motor (-) = mass moment of inertia J_{ex}
 - of mechanical system (kgm²)
- = mass moment of inertia, motor (kgm²) Jm
- = mass moment of inertia, $J_{\rm b}$

V

motor brake (kgm²) For preselection, experience has shown that the following ratios will result in high control performance. These are not rigid limits, but values exceeding them will require closer consideration of the specific application.

Condition	3
-----------	---

Estimation of the ratio of the static load torque to the continuous torque of the motor.

The torque ratio must be smaller than or equal to the empirical value of 0.6. By looking at the required motor torque levels, this estimation roughly covers the dynamic characteristics which still have to be determined by plotting an exact movement profile. $\frac{M_{stat}}{M_0} \le 0.6$

Application area	V
Handling	≤ 6.0
Processing	≥ 1.5

Mo	=	continuous motor torque	(Nm)
M _{stat}	=	static load torque	(Nm)

	Frame moves	Carriage moves	$d_3 = diameter of belt pulley$ (mm)
Static load torque			M_R = frictional torque at journal (Nm) $m_{tot ca}$ = total mass with
	$M_{stat} = M_R + M_g$	$M_{stat} = M_R + M_g$	moving carriage (kg) m _{tot mb} = total mass with
			moving frame (kg)
Weinht mennet			m_{mb} = mass of the moving frame (kg)
Weight moment			k _{g fix} = fixed mass proportion
	$M_{g} = d_{3} \cdot \frac{m_{tot mb} \cdot g}{2 000 \cdot i}$	$M_g = d_3 \cdot \frac{m_{tot ca} \cdot g}{2 \ 000 \cdot i}$	on the frame (kg) k _{g var} = variable mass proportion on the frame (kg/mm)
			M _g = weight moment (Nm)
Moved total mass	$m_{tot mb} = m_{ex} + m_{mb}$ $m_{mb} = k_{g fix} + k_{g var} \cdot L$	$m_{tot ca} = m_{ex} + m_{ca} + m_m + m_{br}$	$\begin{array}{ll} m_{ca} &= mass \mbox{ of the carriage incl. gear (kg)} \\ m_{ex} &= moved \mbox{ external load} & (kg) \\ m_m &= mass \mbox{ of motor} & (kg) \\ m_{br} &= mass \mbox{ of the holding brake} & (kg) \end{array}$

Any additional forces arising from the use of power cable chains, for example, are not included in the observation of the moving total mass and must be taken into account additionally in the calculation where applicable.

In the overview **Configuration and ordering**, users can put together standard configurations, including gears and motor, for the various linear motion system sizes by selecting the appropriate options. By fulfilling the three conditions it is possible to see whether a standard motor selected in a particular configuration will generally be of a suitable size for the specific application.

Precise drive design

Pre-selecting the motor according to this rough guide is no substitute for the precise design calculations required for the drive, where all moments/torques and speed levels are taken into account. For precise calculation of the electric drive, including consideration of the specific movement profile, please refer to the performance data in the catalogs **IndraDrive Cs** and **IndraDrive C**. When sizing the drive, the maximum permitted values for speed, drive torque and acceleration must not be exceeded, in order to avoid damaging the mechanical system!

Calculations

Calculation example

Mounting orientation HORIZONTAL Arrangement: Carriage moves (frame mounted on the mounting base)

Output data

In a handling task in horizontal installation position, a mass of 50 kg is to be moved by 2000 mm at a travel speed of 1.5 m/s. The frame should be mounted on the mounting base (carriage moves). No additional axial forces act. The selection was made based on the technical data and the installation space:

Omega module OBB-120:

- Carriage length = 330 mm (without clamping element)
- Motor attachment via angular planetary gearbox, i = 9
- with servo motor MSK 076C without brake

Module length L:

(In most cases, the recommended limit for excess travel is 2x lead constant. The excess travel must be greater than the excess travel stopping distance, which is calculated for an exact design of the electrical drive.)

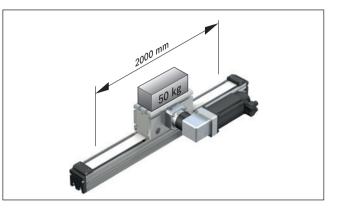
Frictional torque M_R:

(including the gear with gear ratio i = 9)

Mass moment of inertia J_{ex}:

(including the gear with gear ratio i = 9)

Maximum permissible rotary speed n_{mech}:


(Motor attachment via gear, without consideration of the motor) Limit value application

Limit value application

Maximum permissible drive torque M_{mech}:

(Motor attachment via gear) Limit value application

Excess travel: Max. travel	L s _e	$= s_{max} + L_{ca} + L_{ad}$ = 2 \cdot u = 2 \cdot 37.78 = 75.74 = 76 mm
distance:	s _{max}	$= s_{eff} + 2 \cdot s_{e}$ = 2 000 + 2 \cdot 76 = 2 152 mm
		$= 2000 + 2 \cdot 76 = 2152 \text{ mm}$
Module length:	L	= 2 152 + 330 + 170 = 2 652 mm
	M_R	$=M_{Rs}$
Linear module:	M_{Rs}	= 2.02 Nm

J _{ex}	$= J_s + J_t$
Linear module: J _s	$= (k_{J fix} + k_{J var} + L) \cdot 10^{-6}$
	$= (1 838.85 + 0 \cdot 2 652) \cdot 10^{-6}$
	$= 1 838.85 \cdot 10^{-6} \text{kgm}^2$
External load: J _t	$= (m_{ex} + m_m + m_{br}) \cdot k_{J m} \cdot 10^{-6}$
	$= (50 + 13.8 + 0) \cdot 36.15 \cdot 10^{-6}$
	= 2 306.37 · 10 ⁻⁶ kgm ²
Moment of inertia: J _{ex}	$= 1 838.85 \cdot 10^{-6} + 2 306.37 \cdot 10^{-6}$
	$= 4 \ 145.22 \cdot 10^{-6} \text{kgm}^2$

$n_{mech} = (V_{mech} \cdot i \cdot 1 \ 000 \cdot 60) \ / \ \pi \cdot d_3$	
Max. permissible travel speed:	
$V_{mech} = V_{max} = 1.86 \text{ m/s}$	
Max. permissible rotary speed:	
$n_{mech} = (1.86 \cdot 9 \cdot 1 \ 000 \cdot 60) \ / \ \pi \cdot 108.23)$	
= 2 954 min ⁻¹	

Speed: $v_{mech} = 1.5 \text{ m/s}$ Speed: $n_{mech} = (1.5 \cdot 9 \cdot 1 \ 000 \cdot 60) / \pi \cdot 108.23)$ $= 2 \ 382 \ min^{-1}$

	$M_{mech} = M_P$
Drive torque:	M _{mech} = 17.1 Nm

Checking the motor preselection:

selected motor MSK 076C without brake

Condition 1:

Speed:

 $\begin{array}{ll} n_{max} & \geq n_{mech} \\ 4 \ 500 & \geq 2 \ 382 \end{array}$

condition fulfilled - motor size OK

Condition 2:

Mass moment		
of inertia ratio:	V	$= J_{ex} / (J_m + J_{Br})$
Motor inertia:	J_{m}	$= 4 \ 300 \cdot 10^{-6} \ \text{kgm}^2$
Brake moment		
of inertia:	J_{Br}	= 0 kgm ² (without brake)
Inertia ratio:	V	$= 4 \ 145.22 \cdot 10^{-6} / (4 \ 300 \cdot 10^{-6} + 0 \cdot 10^{-6})$
		= 0.96
Condition for handling	: V	≤ 6
	0.96	$\delta \leq 6$
condition fulfilled – m	notor s	size OK

Condition 3:

Torque ratio:	M _{stat} /	$M_0 \leq 0.6$
Static		
Load torque:	M _{stat}	= M _R + Mg
Weight moment:	Mg	= 0 Nm (horizontal mounting orientation)
Static		
Load torque:	M _{stat}	= 2.02 Nm
Continuous		
motor torque:	$M_0 =$	12 Nm
Torque ratio:	2.02 /	12 = 0.17
	0.17	≤ 0.6
condition fulfilled - r	notor size	e OK

Result:

Г

Length	L	= 2 652 mm
Max. travel distance	Smax	= 2 152 mm
Carriage length	L _{ca}	= 330 mm
Drive	toothe	d belt drive
Motor mounting	via ang	gular planetary gearbox
Gear ratio	i = 9	
Preselected motor:	MSK (76C without brake
Arrangement:	Frame	mounted on the mounting base,
	carriag	le moving
	Mount	ing orientation horizontal
For precise sizing of t	he electri	ic drive, the motor-controller combinatio
		s the performance data (e.g. maximum
,		rque) will depend on the controller used
·		
•		g data must be considered:
- Frictional torque:		g data must be considered: = 2.02 Nm
Frictional torque:Mass moment	M _R	= 2.02 Nm
 Frictional torque: Mass moment of inertia: 	M _R J _{ex}	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ²
Frictional torque:Mass moment	M _R J _{ex} v _{mech}	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s
 Frictional torque: Mass moment of inertia: Speed: 	M _R J _{ex}	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s
 Frictional torque: Mass moment of inertia: Speed: Limit value for 	M _R J _{ex} v _{mech} (n _{mech}	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s = 2 382 min ⁻¹)
 Frictional torque: Mass moment of inertia: Speed: Limit value for Drive torque: 	M _R J _{ex} v _{mech} (n _{mech}	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s = 2 382 min ⁻¹) = 17.1 Nm
 Frictional torque: Mass moment of inertia: Speed: Limit value for Drive torque: 	M _R J _{ex} v _{mech} (n _{mech}	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s = 2 382 min ⁻¹)
 Frictional torque: Mass moment of inertia: Speed: Limit value for Drive torque: The motor torque mutaget 	M _R J _{ex} v _{mech} (n _{mech} M _{mech} st be lim	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s = 2 382 min ⁻¹) = 17.1 Nm
 Frictional torque: Mass moment of inertia: Speed: Limit value for Drive torque: The motor torque mu Limit value for 	M _R J _{ex} v _{mech} (n _{mech}	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s = 2 382 min ⁻¹) = 17.1 Nm ited to 17.1 Nm on the drive side!
 Frictional torque: Mass moment of inertia: Speed: Limit value for Drive torque: The motor torque mu Limit value for acceleration: Limit value for 	M _R J _{ex} v _{mech} (n _{mech} M _{mech} st be lim	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s = 2 382 min ⁻¹) = 17.1 Nm ited to 17.1 Nm on the drive side!
 Frictional torque: Mass moment of inertia: Speed: Limit value for Drive torque: The motor torque mu Limit value for acceleration: 	M _R J _{ex} v _{mech} (n _{mech} M _{mech} st be lim	= 2.02 Nm = 4 145.22 \cdot 10 ⁻⁶ kgm ² = 1.5 m/s = 2 382 min ⁻¹) = 17.1 Nm ited to 17.1 Nm on the drive side! = 50 m/s ²

during the exact design, check whether the selected excess travel is sufficient or whether, if appropriate, an adjustment must be made. Besides the preferred type MSK 076C, other motors with identical connection dimensions can be adapted while taking care not to exceed the calculated limits. Calculations

Calculation example

Mounting orientation VERTICAL Arrangement: Frame moves (carriage mounted on the mounting base)

Output data

In a handling task in vertical installation position, a mass of 20 kg is to be moved by 1 000 mm at a travel speed of 1.5 m/s. No additional axial forces act. The frame should enter the working range (frame moves). The selection was made based on the technical data and the installation space:

Omega module OBB-085:

- Carriage length = 260 mm (without clamping element
- Motor attachment via angular planetary gearbox, i = 8
- with servo motor MSK 050C wit brake

Module length L:

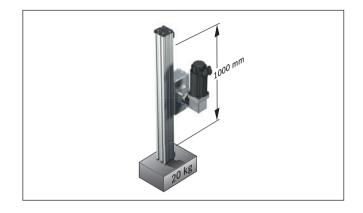
(In most cases, the recommended limit for excess travel is 2x lead constant. The excess travel must be greater than the excess travel stopping distance, which is calculated for an exact design of the electrical drive.)

Frictional torque M_R:

(including the gear with gear ratio i = 8)

Mass moment of inertia J_{ex}:

(including the gear with gear ratio i = 8)


Maximum permissible rotary speed n_{mech}:

(Motor attachment via gear, without consideration of the motor) Limit for mechanical system

Maximum speed of the application M_{mech}: (Motor attachment via gear) Limit value application

Maximum permissible drive torque M_{mech}:

(Motor attachment via gear) Limit for mechanical system

Excess travel: Max. travel	L s _e	$= s_{max} + L_{ca} + L_{ad}$ = 2 \cdot u = 2 \cdot 31.88 = 63.76 = 64 mm
distance:	s _{max}	$= s_{eff} + 2 \cdot s_{e}$
		$= 1\ 000 + 2 \cdot 64 = 1\ 128\ mm$
Module length:	L	= 1 128 + 260 + 130 = 1 518 mm

 $\begin{array}{ll} M_{R} & = M_{Rs} \\ \mbox{Linear module:} & M_{Rs} & = 0.93 \mbox{ Nm} \end{array}$

64	$= J_{s} + J_{t}$ = (k _{1 fv} + k _{1 vor} + L) · 10 ⁻⁶
	$=(123.47 + 0.2821 \cdot 1518) \cdot 10^{-6}$
	$= 551.657 \cdot 10^{-6} \text{kgm}^2$
External load: J _t	$= m_{ex} \cdot k_{Jm} \cdot 10^{06}$
	$= 20 \cdot 25.74 \cdot 10^{-6} \text{kgm}^2$
	$= 514.732 \cdot 10^{-6} \mathrm{kgm^2}$
Moment of inertia: J _{ex}	$= 551.657 \cdot 10^{-6} + 514.732 \cdot 10^{-6}$
	$= 1 066.389 \cdot 10^{-6} \text{kgm}^2$

$$\begin{split} n_{mech} &= (V_{mech} \cdot i \cdot 1 \ 000 \cdot 60) \ / \ \pi \cdot d_3 \\ \text{Max. permissible travel speed:} \\ V_{mech} &= V_{max} = 2.13 \ \text{m/s} \\ \text{Max. permissible rotary speed:} \\ n_{mech} &= (2.13 \cdot 8 \cdot 1 \ 000 \cdot 60) \ / \ \pi \cdot 81.17) \\ &= 4 \ 009 \ \text{min}^{-1} \end{split}$$

 Speed:
 $v_{mech} = 1.5 \text{ m/s}$

 Speed:
 $n_{mech} = (1.5 \cdot 8 \cdot 1\ 000 \cdot 60) / \pi \cdot 81.17)$

 = 2 823 min⁻¹

$$\label{eq:Mmech} \begin{split} & M_{mech}{=}\,M_{P} \\ \text{Drive torque:} & M_{mech}{=}\,5\,\,\text{Nm} \end{split}$$

Checking the motor preselection: selected motor MSK 050C with brake

Condition 1:

Speed: n_r

 $\begin{array}{rrr} n_{max} & \geq & n_{mech} \\ 6 \ 000 \ \geq & 2 \ 823 \end{array}$

condition fulfilled – motor size OK

Condition 2:

Mass moment		
of inertia ratio:	V	$= J_{ex} / (J_m + J_{Br})$
Motor inertia: Brake moment	J _m	$= 330 \cdot 10^{-6} \text{kgm}^2$
of inertia:	J_{Br}	= $107 \cdot 10^{-6}$ kgm ² (with brake)
Inertia ratio:	V	$= 1\ 066.389 \cdot 10^{-6} / (330 \cdot 10^{-6} + 107 \cdot 10^{-6})$
		= 2.44
Condition for handling:	V	≤ 6
	2.44	≤ 6

condition fulfilled - motor size OK

Condition 3:

Torque ratio:	M _{stat}	$/ M_0 \le 0.6$
Static		
Load torque:	M _{stat}	$= M_R + M_g$
Weight moment:	M_g	= d ₃ · (m _{ex} + m _{mb}) · g / 2 000 · i
Mass of the moving fr	ame:	
	m _{mb}	$= k_{g fix} + k_{g var} \cdot L$
		= 1.05 + 0.0108 · 1 518
		= 17.44 kg
Moved		
external load	m _{ex}	= 20 kg
	M_g	= 81.17 · (17.44 + 20) · 9.81 / 2 000 · 8
		= 1.86 Nm
Static		
Load torque:	M_{stat}	= 0.93 + 1.86 = 2.79 Nm
Continuous		
motor torque:	M_0	= 5 Nm
Torque ratio:	2.79/	5 = 0.56
	0.56	≤ 0.6
condition fulfilled – m	otor si	ze OK

Result:

Omega module OB Length	L = 1.518 mm
Max. travel distance	$s_{max} = 1.128 \text{ mm}$
	$L_{ca} = 260 \text{ mm}$
Carriage length Drive	$L_{ca} = 200 \text{ mm}$ toothed belt drive
Motor mounting	via angular planetary gearbox
Gear ratio	
Preselected motor:	MSK 050C with brake
Arrangement:	Carriage fixed on the mounting base,
	frame moves
	Mounting orientation vertical
For precise sizing of t	he electric drive, the motor-controller combination
must always be consi	dered, as the performance data (e.g. maximum
useful speed and max	imum torque) will depend on the controller used.
·	
When doing this, the	following data must be considered:
- Frictional torque:	$M_{R} = 0.93 \text{ Nm}$
 Mass moment 	
of inertia:	$J_{ex} = 1 \ 066.389 \cdot 10^{-6} \ \text{kgm}^2$
- Speed:	v _{mech} = 1.5 m/s
	$(n_{mech} = 2 \ 823 \ min^{-1})$
 Limit value for 	
Drive torque:	$M_{mech} = 5 Nm$
	st be limited to 5 Nm on the drive side!
 Limit value for 	
acceleration:	$a_{max} = 50 \text{ m/s}^2$
 Limit value for 	
speed:	v _{mech} = 2.13 m/s
	$(n_{mech} = 4 \ 009 \ min^{-1})$
the exact design, che or whether, if appropr	el stopping distance has been determined during ck whether the selected excess travel is sufficien riate, an adjustment must be made. d type MSK 050C, other motors with identical
	ns can be adapted while taking care not to
exceed the calculate	
UNDEED INE CAICUIDIE	a minto.

Configuration and ordering

OBB-055

Configuration and ordering

	product name, length 055-NN-1, mm	Guideway	Drive		Carriage		
Versio	2)		Reduct	tion	L _{ca} = 2 without	230 mm with	
versio			i=1	i=3 i=5 i=8		g element	
with drive (MA), without gear i = 1	MA01, hollow shaft with clamping hub	01	01	-	01	02	
with gear (MG), angular planetary gearbox WPG	MG01 MG02 MG03 MG04 MG04 MG04 MG04	01	_	10	01	02	
with gear (MG), planetary gearbox PG	MG10	01	_	10	01	02	

Ordering example: see "Inquiry/order"

Note:

When a shock absorber is used, the maximum travel distance is reduced due to the construction (s_{max}). For the calculation, the maximum travel distance must therefore be reduced by the value s_{red} per side or per shock absorber, see section "Accessories".

Motor attachment			Motor		Switching system ⁴⁾	Documentation	
Speed reduction i =		eent kit ³⁾ gear MG02 MG04	for motor	without Br	with ake	Gold Color	standard report
						Without switch and 00 without cable duct	
_	0	0	_	(00	Carriage moves Switch: - PNP NC 71	
i = 3	45	55				- PNP NO 73 - Mechanical 75	
i = 5	47	57	MSK 040C	86	87	Cable duct ¹⁾ 20	-
						Socket-plug 17	
i = 5	46	56				Switching angle 36	01
i = 8	44	54	MSM 031C	138	139	Frame moves Switch:	
i = 3	2	11				- PNP NC 61 - PNP NO 63 - Mechanical 65	
i = 5	4	13	MSK 040C	86	87	Socket-plug 17	
i = 5	4	12				Two control strips 39	
i = 8	4	10	MSM 031C	138	139		

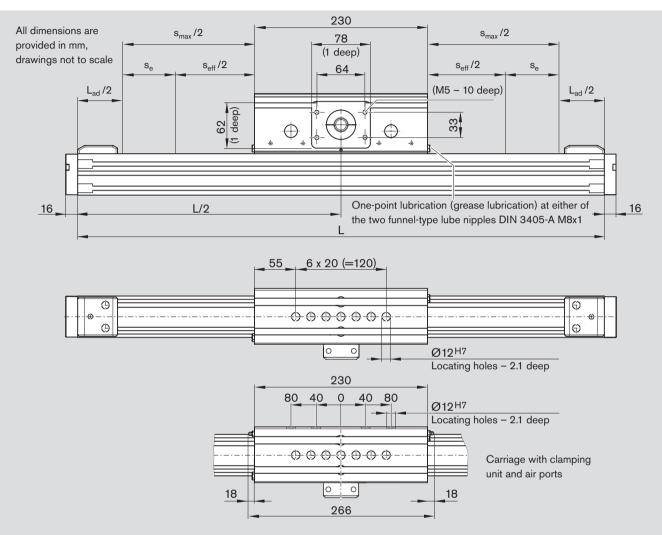
 The delivery length of the cable duct corresponds to the length of the profiled support. For a different length, please order the cable duct as a single item (ordering "Switches and attachments" page 44)

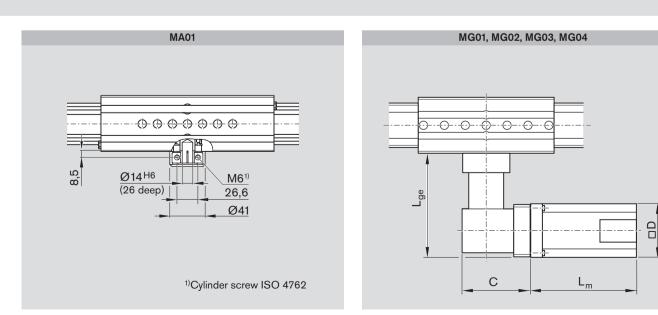
2) When the servo motor is mounted, the delivery is only made in accordance with the motor assembly shown in the "Delivery form" section (note the position of the motor connectors)!

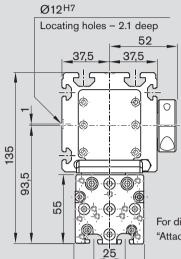
Length L (mm):

$$L = s_{max} + L_{ca} + L_{ad}$$
$$s_{max} = s_{eff} + 2 \cdot s_{e}$$

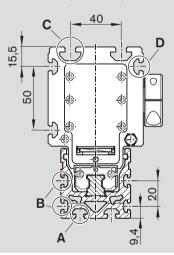
3) Attachment kit can also be delivered without motor.
When ordering, enter the motor type "00"!

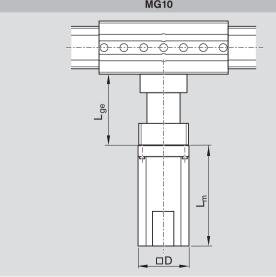

4) The switches are selected according to the installation situation (carriage / frame moves)! See section "Switch mounting".

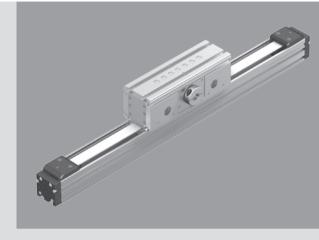

L_{ca}	=	carriage length	(mm)
L_{ad}	=	additional length	(mm)
		(for the value, see the	
		table in the section	
		"General technical data")	
s _{max}	=	maximum travel distance	(mm)
s _{eff}	=	effective travel distance	(mm)
s _e	=	excess travel	(mm)


Configuration and ordering

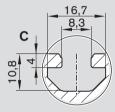
OBB-055

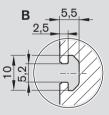

Dimensions



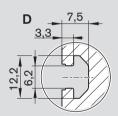

For dimensions of end plate, see section "Attachment of additional devices"

55





12 Α 3,3 6,2


7.5

s_e

= excess travel

Motor ¹⁾	Dimens	ions (mn	n)					
	Gear ur	nit	Motor					
	M	G	MG	D	Lm			
	01/02/03/04				without	with		
	L_{ge}	С	L _{ge}		brake	brake		
MSK 040C	150.5	97.5	111.5	82	185.5	215.5		
MSM 031C	135.5	97.5	111.5	60	98.5	135.0		
1) For the cor	nector p	osition of	the motor	, obse	erve section "l	Delivery form"		
L = lengtl	า		D	=	motor width			
C = gear	height		L _m	=	motor length	1		
L_{ge} = gear	ength							
$L_{ca} = carria$	ige lengtl	h	(mm)					
L _{ad} = addit	ional leng	yth	(mm)					
(for the value, see the table in the								
sectio	on "Gene	ral technic	cal data")					
s _{max} = maxir	num trave	el distanc	e (mm)					
s_{eff} = effect	tive trave	l distance	e (mm)					

(mm)

Configuration and ordering

OBB-085

Configuration and ordering

	product name, length 085-NN-1, mm	Guideway	Drive		Carriage		
			Reduction		L _{ca} = 260 mm	L _{ca} = 308 mm	
Versi	on ²⁾		i = 1	i=5 i=8	without Clamping	with element	
with drive (MA), without gear i = 1	MA01, hollow shaft with clamping hub	01	01	_	01	02	
with gear (MG), angular planetary gearbox WPG	MG01 MG02 MG03 MG04 MG04 MG04 MG04 MG04 MG04 MG04 MG04	01	_	10	01	02	
with gear (MG), planetary gearbox PG	MG10	01	_	10	01	02	

Ordering example: see "Inquiry/order"

Note:

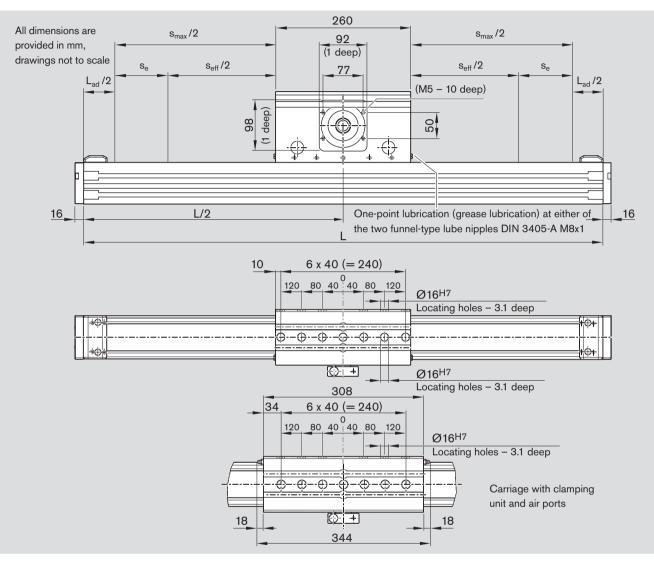
When a shock absorber is used, the maximum travel distance is reduced due to the construction (s_{max}) . For the calculation, the maximum travel distance must therefore be reduced by the value s_{red} per side or per shock absorber, see section "Accessories".

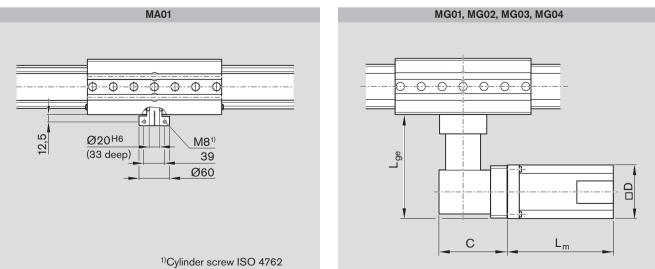
Motor attachment			Motor	otor Switching system ⁴⁾		Documentation	
		nent kit ³⁾	for motor	without	with	Co-Star	standard report
reduction i =	MG01	gear MG02		bra	ake		
	MG03	MG04					
						Without switch and 00 without cable duct	
-	00		-	00		Carriage moves	
						Switch: – PNP NC 71	
						– PNP NO 73 – Mechanical 75	
i = 5	33	43	MSK 050C	88	89	Cable duct ¹⁾ 20	-
i = 8	35	45				Socket-plug 17	-
						Switching angle 36	01
i = 8	34	44	MSM 041B	140	141	Frame moves	
						Switch: - PNP NC 61	
i = 5	a	20				– PNP NO 63	
1=5	30					– Mechanical 65	-
			MSK 050C	88	89	Socket-plug 17	_
i = 8	3	2				Two control strips 41	
i = 8	3	31	MSM 041B	140	141		

- The delivery length of the cable duct corresponds to the length of the profiled support. For a different length, please order the cable duct as a single item (ordering "Switches and attachments" page 44)
- 2) When the servo motor is mounted, the delivery is only made in accordance with the motor assembly shown in the "Delivery form" section (note the position of the motor connectors)!

Length L (mm):

$$L = s_{max} + L_{ca} + L_{ad}$$
$$s_{max} = s_{eff} + 2 \cdot s_{e}$$

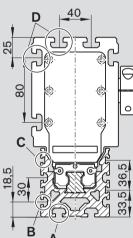

- 3) Attachment kit can also be delivered without motor. When ordering, enter the motor type "00"!
- 4) The switches are selected according to the installation situation (carriage / frame moves)! See section "Switch mounting".

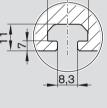

$L_{ca} =$	carriage length	(mm)				
$L_{ad} =$	additional length	(mm)				
	(for the value, see the table	in the				
	section "General technical data")					
s _{max} =	maximum travel distance	(mm)				
s _{eff} =	effective travel distance	(mm)				
s _e =	excess travel	(mm)				

Configuration and ordering

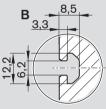
OBB-085

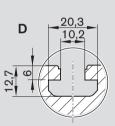
Dimensions

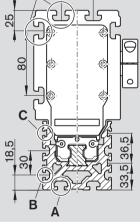

0,5

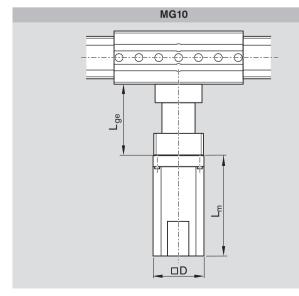

156,5

85


222




= excess travel


s_e

Motor ¹⁾	Dimensions (mm)						
	Gear ur	nit		Mot	or		
	M	IG	MG	D	L _m		
	01/02/	/03/04	10		without	with	
	L _{ge}	С	L _{ge}		brake	brake	
MSK 050C	192.5	124.5	142	98	203.0	233.0	
MSM 041B	187.5	124.5	142	80	112.0	149.0	
1) For the cor L = lengt							
C = gear $L_{ge} = gear$	height		Lm		motor length		
$L_{ca} = carriage length$ (mm)							
uu .	ional leng		(mm)				
(for the value, see the table in the							
sectio	section "General technical data")						
s _{max} = maxir	num trave	el distanc	e (mm)				
$s_{eff} = effect$	tive trave	l distance	e (mm)				

(mm)

Configuration and ordering

OBB-120

Configuration and ordering

	rt product name, length 3-120-NN-1, mm	Guideway			Carriage		
			Reduction			330 mm	
Vers	ion ²⁾		i=1	i = 9	without Clamping	with g element	
with drive (MA),	MA01, hollow shaft with clamping hub	01	01	_	01	02	
with gear (MG),		01	_	10	01	02	
with gear (MG),	MG10	01	_	10	01	02	

Ordering example: see "Inquiry/order"

Note:

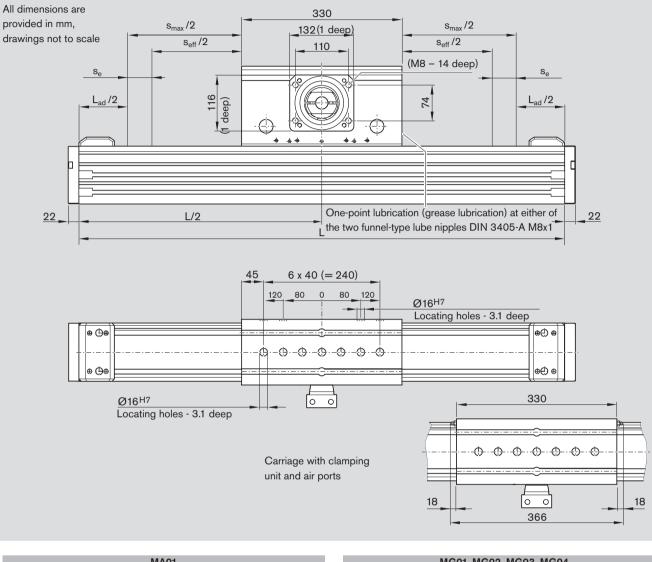
When a shock absorber is used, the maximum travel distance is reduced due to the construction (s_{max}) . For the calculation, the maximum travel distance must therefore be reduced by the value s_{red} per side or per shock absorber, see section "Accessories".

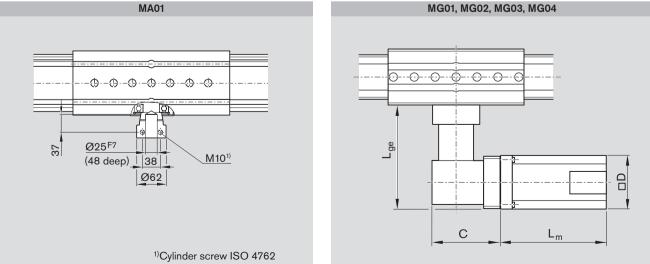
Motor atta Speed reduction i =	Attachi	ment kit ³⁾ n gear MG02	for motor	Motor	with ake	Switching system ⁴⁾	Documentation
-		00	_	0	00	Without switch and without cable duct 00 Carriage moves 00 Switch: 71	
i = 9	31	32	MSK 076C	92	93	- PNP NO 73 - Mechanical 75 Cable duct ¹⁾ 20 Socket-plug 17 Switching angle 36 Frame moves Switch:	01
i = 9		30	MSK 076C	92	93	- PNP NC 61 - PNP NO 63 - Mechanical 65 Socket-plug 17 Two control strips 43	

- The delivery length of the cable duct corresponds to the length of the profiled support. For a different length, please order the cable duct as a single item (ordering "Switches and attachments" page 44)
- 2) When the servo motor is mounted, the delivery is only made in accordance with the motor assembly shown in the "Delivery form" section (note the position of the motor connectors)!

Length L (mm):

$$L = s_{max} + L_{ca} + L_{ad}$$
$$s_{max} = s_{eff} + 2 \cdot s_{e}$$


- 3) Attachment kit can also be delivered without motor. When ordering, enter the motor type "00"!
- 4) The switches are selected according to the installation situation (carriage / frame moves)! See section "Switch mounting".


$L_{ca} =$	Carriage length	(mm)
$L_{ad} =$	additional length	(mm)
	(for the value, see the table	in the
	section "General technical	data")
s _{max} =	maximum travel distance	(mm)
s _{eff} =	effective travel distance	(mm)
s _e =	excess travel	(mm)

Configuration and ordering

OBB-120

Dimensions

Ø16^{H7}

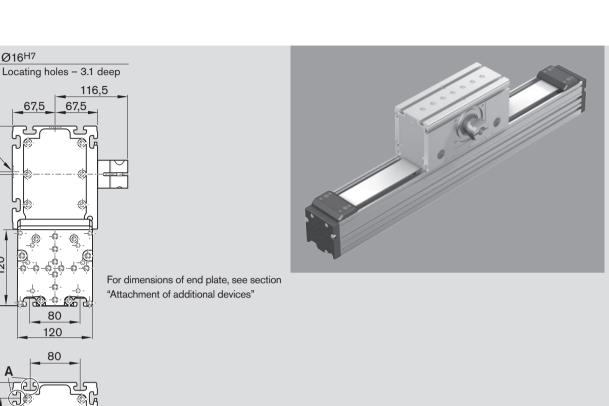
2

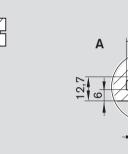
208

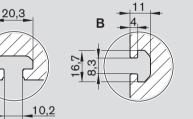
22

100

С

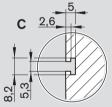

40

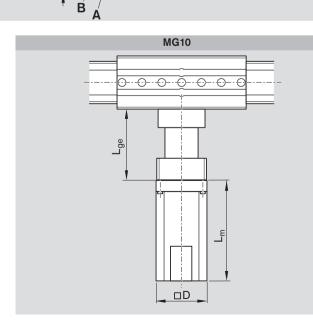

120


285

67,5

影




= effective travel distance

= excess travel

Seff

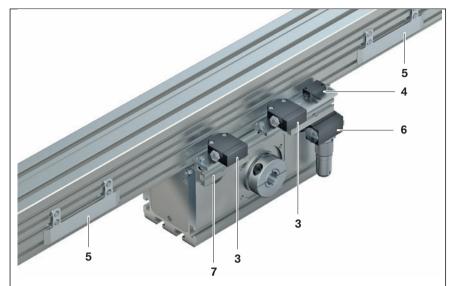
se

S 2

Motor ¹⁾	Dimensions (mm) Gear unit Motor					
		G	MG	D		
				U	L _m	
	01/02/	/03/04	10		without	with
	L _{ge}	С	L _{ge}		brake	brake
MSK 076C	287.5	155.5	212	140	292.5	292.5
- _{ge} = gear l	ength				-	
$L_{ca} = carriage length$ (mm)						
L _{ad} = additi	onal leng	jth	(mm)		
(for the value, see the table in the section "General technical data")						
s _{max} = maxin	num trave	el distanc	e (mm)		

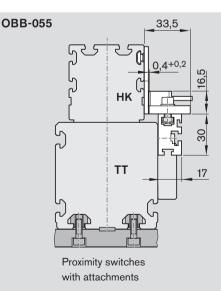
(mm)

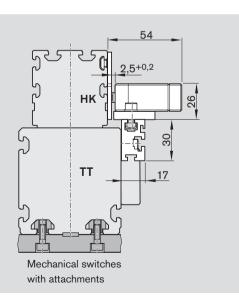
(mm)

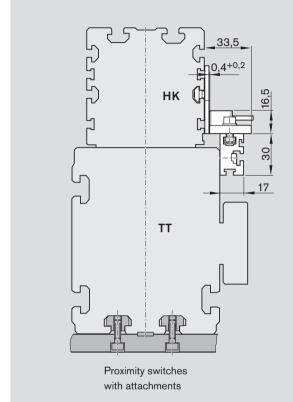

Switch mounting - frame moves (carriage fixed)

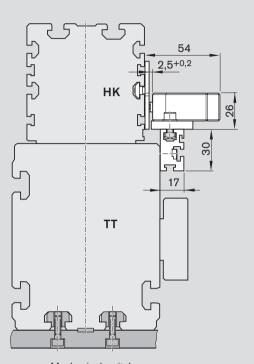
Switching principle

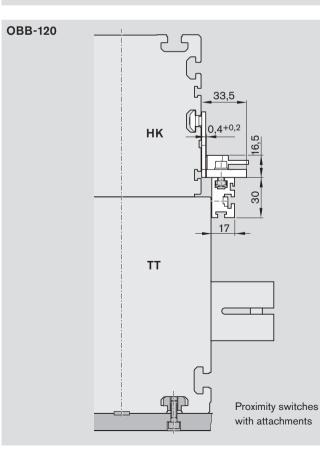
- Proximity or mechanical switches on the carriage (TT)
- Switch activation via control strip on the frame (HK)

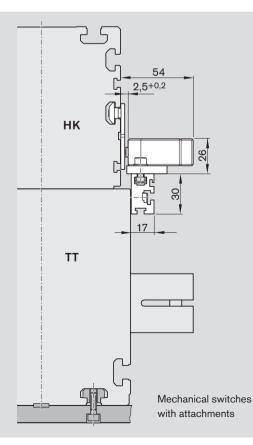

Overview of switching system


- 3 Mechanical switches (with attachments)
- 4 Proximity switch (with attachments)
- **5** Control strip on the frame
- 6 Socket and plug
- 7 Switch mounting profile

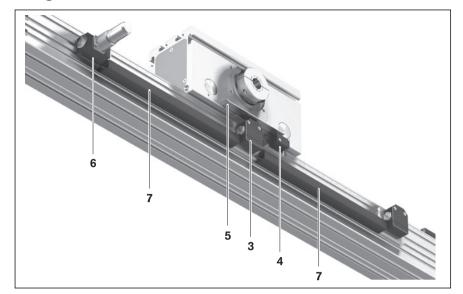

Pos.	Description	Material number		OBB-085 Material number included in (option ¹⁾)		OBB-120 Material number included in (option ¹⁾)	
3	Mechanical switch with attachments	R1175 001 62	(65)	R1175 001 62	(65)	R1175 001 62	(65)
	Mechanical switch	R3453 040 16	(65)	R3453 040 16	(65)	R3453 040 16	(65)
4	Proximity switch, PNP NC	R3453 040 01	(61)	R3453 040 01	(61)	R3453 040 01	(61)
	Proximity switch, PNP NO	R3453 040 03	(63)	R3453 040 03	(63)	R3453 040 03	(63)
	Attachments for proximity switch	R1175 001 63	(61), (63)	R1175 001 63	(61), (63)	R1175 001 63	(61), (63)
5	2 control strips with attachments	R1175 001 59	(39)	R1175 001 60	(41)	R1175 001 61	(42)
6	Socket + plug	R1175 001 53	(17)	R117 5001 53	(17)	R1175 001 53	(17)
7	Switch mounting profile with attachments	R1175 001 64	(39)	R1175 001 64	(41)	R1175 001 64	(42)


1) For options, see "Configuration and ordering"





Mechanical switches with attachments

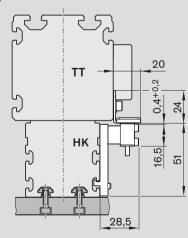

Switch mounting - carriage moves (frame fixed)

Switching principle

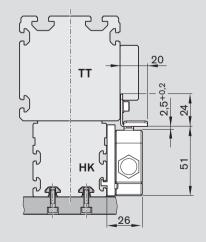
- Proximity or mechanical switches on the frame (HK)
- Switch activation via switching angle on the carriage (TT)

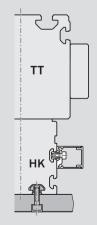
Overview of switching system

- 3 Mechanical switch (with attachments)
- 4 Proximity switch (with attachments)
- **5** Switching angle
- 6 Socket and plug
- 7 Cable duct

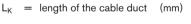


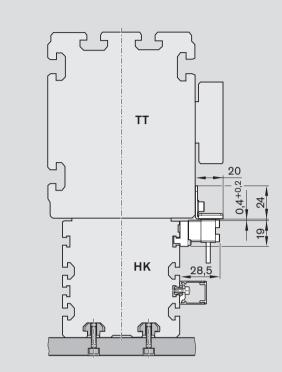
Pos.	Description	OBB-055		OBB-085		OBB-120	
		Material number		Material number		Material number	
		included in (optic	on ¹⁾)	included in (option ¹⁾)		included in (option ¹⁾)	
3	Mechanical switch with attachments	R1175 001 51	(75)	R1175 001 51	(75)	R1175 001 51	(75)
	Mechanical switch without attachments	R3453 040 16	(75)	R3453 040 16	(75)	R3453 040 16	(75)
4	Proximity switch, PNP NC	R3453 040 01	(61)	R3453 040 01	(61)	R3453 040 01	(61)
	Proximity switch, PNP NO	R3453 040 03	(63)	R3453 040 03	(63)	R3453 040 03	(63)
	Attachments for proximity switch	R1175 001 57	(71), (73)	R1175 001 58	(71), (73)	R1175 001 58	(71), (73)
5	Switching angle with attachments	R1175 001 56	(36)	R1175 001 56	(36)	R1175 001 56	(36)
6	Socket + plug	R1175 001 53	(7)	R1175 001 53	(17)	R1175 001 53	(17)
7	Cable duct, L _K =	R0396 620 17 ²⁾	(20)	R0396 620 17 ²⁾	(20)	R0396 620 17 ²⁾	(20)


1) For options, see "Configuration and ordering"

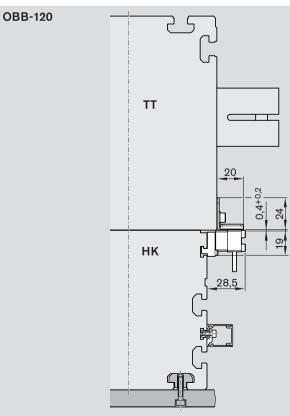

2) A length must always be specified when ordering cable ducts. For example "R0396 620 17, 285 mm".

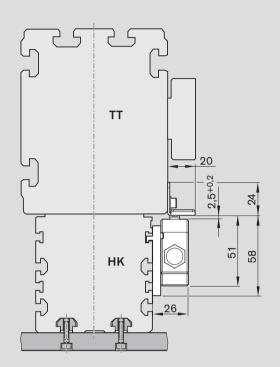
OBB-055

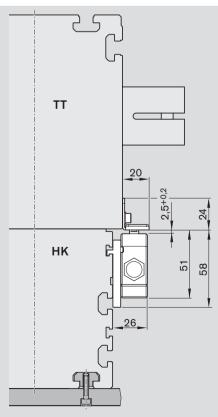

Proximity switches with attachments



Cable duct


Mechanical switches with attachments

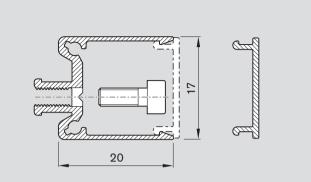

OBB-085


Proximity switches with attachments / cable duct

Proximity switches with attachments / cable duct

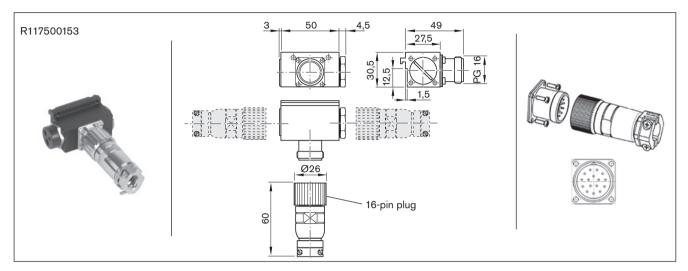
Mechanical switches with attachments

Mechanical switches with attachments


Cable duct

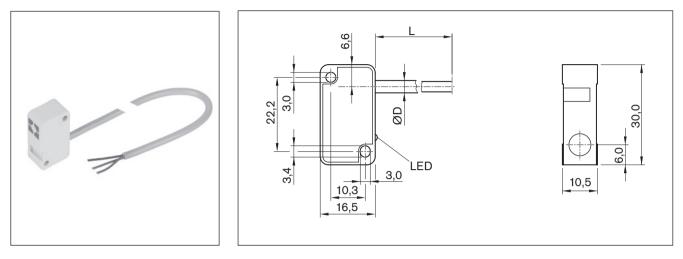
• The cable duct is fastened in the T-slots on the side of the frame. Fastening screws widen the profile and give the cable duct a secure hold.

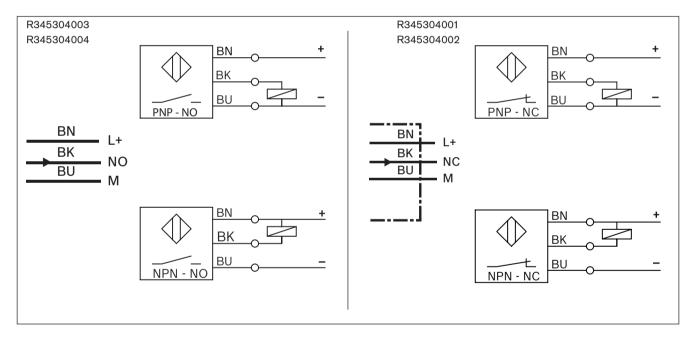
For the slot position, see


"Configuration and ordering" tables and "Dimension drawings".

The cable duct will accommodate up to two cables for mechanical switches and three cables for proximity switches. Fastening screws and cable grommets are included.

Socket and plug


Attach the socket at the end with the sensors or switches. The socket and plug are not pre-wired. Since the mounting arrangements allow shifting of the switches, the switch activation points can be optimized during commissioning. The plug can be mounted in three directions.



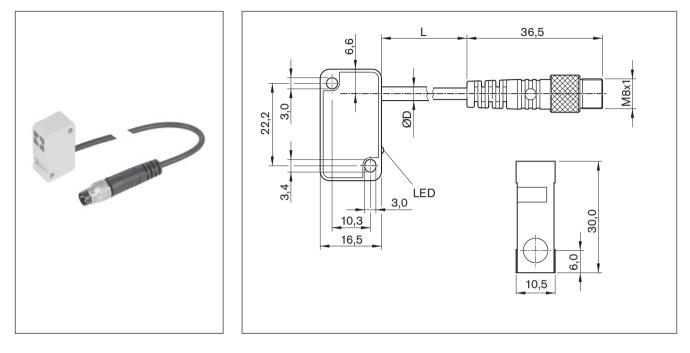
Use Socket and plug			
Material number	R117500153		
Designation	for OBB-055, -085, -120		
Version	angled, for suspension in the lateral slot of the OBB		
Operating current per contact	max. 8 A		
Operating voltage	150 V AC/DC		
1. Connection type	Straight socket, 16-pin, soldered connection		
2. Connection type	Coupling / flange socket, 16-pin, soldered connection		
Cable bushing, housing	1 seal with hole 2x5.5 mm, 1x3.5 mm		
	1 adaptable seal, max. 14 mm diameter		
	incl. cap and blind plug		
Cable bushing, plug	Bolting with strain relief		
Connection cross-section	0.14 1 mm		
Cable diameter	10 14 mm		
Ambient temperature	-20 °C to +125 °C		
Protection class	-		
Certifications and approvals	_		

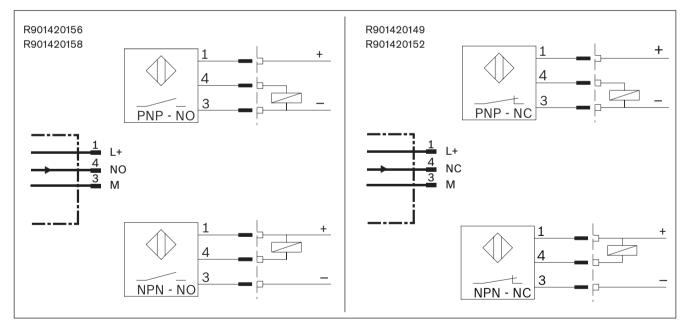
Sensors

Proximity sensor with free line end

Use	Limit switch	Reference switch	Limit switch	Reference switch	
Material number	R345304001	R345304003	R345304002	R345304004	
Designation	BES 517-351-NO-C-03	BES 517-398-NO-C-03	BES 517-352-NO-C-03	BES 517-399-NO-C-03	
Functional principle		proxi	mity		
Operating voltage		10 - 30	VDC		
Load current		≤ 200) mA		
Switching function	PNP/normally closed (NC)	PNP/normally open (NO)	NPN/normally closed (NC)	NPN/normally open (NO)	
Connection type		Line 3 m, 3-pir	n, free line end		
Function indication		√	/		
Short-circuit protection		~	/		
Reverse polarity protection		~	/		
Switching frequency		2.5	kHz		
Max. perm. approach speed		depending on the	switch flag length		
Suitable for drag chains ¹⁾		_	_		
Can withstand torsion ¹⁾		-	-		
Weld spark resistant ¹⁾		-	-		
Cable cross-section ¹⁾		3x0.14	mm ²		
Cable diameter D ¹⁾		3.5 ^{±0.}	¹³ mm		
Bending radius, static ¹⁾		12 r	nm		
Bending radius, dynamic ¹⁾		12 r	nm		
Bending cycles ¹⁾	-				
Ambient temperature	-40 °C to +70 °C				
Protection class	IP65				
MTTFd	MTTFd = 8	330 years	MTTFd = 5	85 years	
(acc. to EN ISO 13849-1)					
Certifications and		((()	us 🖌		
approvals ²⁾			RoHS		

Material numbers / technical data


1) Technical data only for the cast-on connection line at the proximity sensor.


Even more performance, e.g. extension cables are offered for use in a power cable chain (see the following pages).

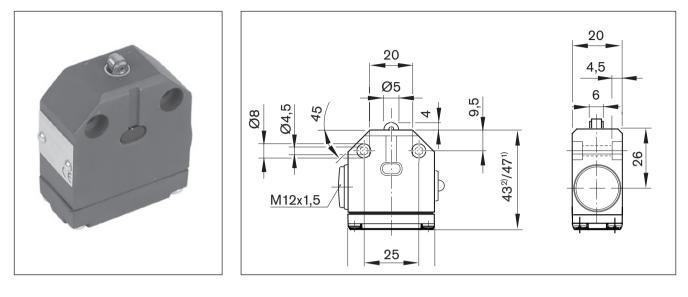
2) For these products no (certificate is necessary for introduction into the Chinese market.

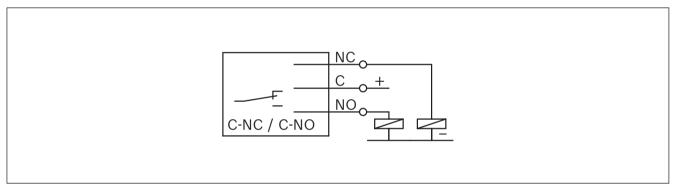
Sensors

Proximity sensor with M8x1 plug

Material numbers	/ technical data
------------------	------------------

Use	Limit switch	Reference switch	Limit switch	Reference switch		
Material number	R901420149	R901420156	R901420152	R901420158		
Designation	BES 517-351-NO-C-	BES 517-398-NO-C-	BES 517-352-NO-C-	BES 517-399-NO-C-		
	S49-00.2	S49-00.2	S49-00.2	S49-00.2		
Functional principle		prox	imity			
Operating voltage		10 - 30) V DC			
Load current		≤ 20	0 mA			
Switching function	PNP/normally closed (NC)	PNP/normally open (NO)	NPN/normally closed (NC)	NPN/normally open (NO		
Connection type	(Cable 0.2 m and plug M8 x	1, 3-pin with knurled screw	~ 		
Function indication		Ŷ	(
Short-circuit protection		Ŷ	(
Reverse polarity protection		\checkmark				
Switching frequency		2.5 kHz				
Max. permissible approach speed	depending on the switch flag length					
Suitable for drag chains ¹⁾	_					
Can withstand torsion ¹⁾	_					
Weld spark resistant ¹⁾		-	_			
Cable cross-section ¹⁾		3x0.14	4 mm ²			
Cable diameter D ¹⁾		3.5 ±0	^{.15} mm			
Bending radius, static ¹⁾		12	mm			
Bending radius, dynamic ¹⁾	12 mm					
Bending cycles ¹⁾	-					
Ambient temperature	-40 °C to +70 °C					
Protection class	IP65					
MTTFd (acc. to EN ISO 13849-1)	MTTFd = 8	830 years	MTTFd =	585 years		
Certifications and approvals ²⁾			RoHS			

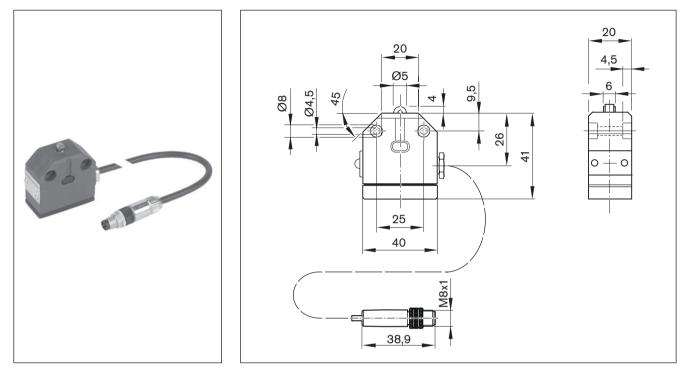

1) Technical data only for the cast-on connection line at the proximity sensor.

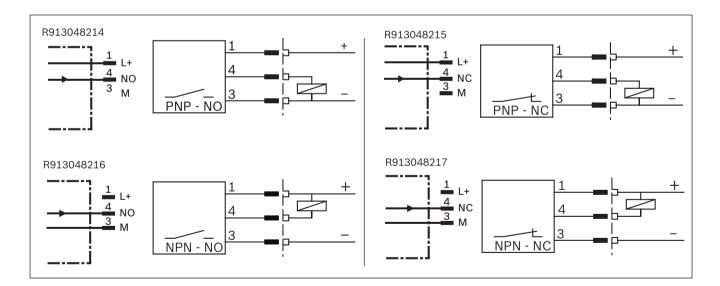

Even more performance, e.g. extension cables are offered for use in a power cable chain (see the following pages).

2) For these products no (certificate is necessary for introduction into the Chinese market.

Switches

Mechanical switch




.

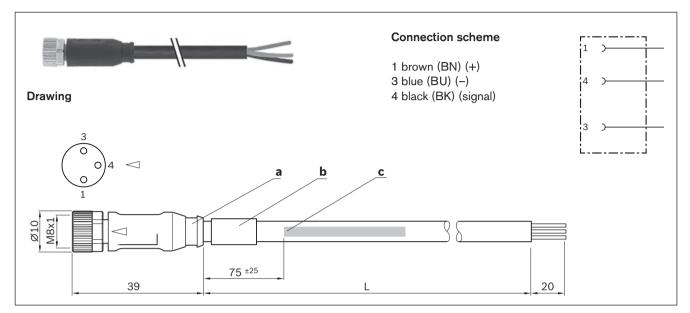
Material numbers / technical data					
Use	Limit switch				
Material number	R345304016 ¹⁾	R347600305 ²⁾			
Designation	BNS 819-X496-99-R-11	BNS 819-X510-99-R-10			
Functional principle	Mechanical,	roller			
Operating voltage	250 V A	C			
Load current	≤ 5 A				
Switching function	Single-pole changeover/ (NC: C+NC, NO: C+NO)				
Connection type	Screw connection, without line				
Function indication	-				
Switching frequency	3.3 Hz				
Max. permissible approach speed	1 m/s				
Ambient temperature	-5 °C to +8	5 °C			
Protection class	IP67				
B10d value	5x10 ⁶ (wet area); 10x10 ⁶ (depende	nt on current load (dry area))			
Certifications and approvals, housing	CE C Pohs				
Certifications and approvals, switching element	CE CE Rohs				

Switches

Mechanical sensor with M8x1 plug

Use	Limit switch	Reference switch	Limit switch	Reference switch	
Material number	R913048215	R913048214	R913048217	R913048216	
Designation	BNS 819-X1002-99-R-10	BNS 819-X1001-99-R-10	BNS 819-X1004-99-R-10	BNS 819-X1003-99-R-10	
Functional principle		Mechani	ical, roller		
Operating voltage		10 - 3	0 VDC		
Load current		≤ 20	00 mA		
Switching function	PNP/normally closed (NC)	PNP/normally open (NO)	NPN/normally closed (NC)	NPN/normally open (NO)	
Connection type		Cable 0.2 m and plug M8	x 1, 3-pin with knurled screw		
Function indication			_		
Short-circuit protection		_			
Reverse polarity protection	_				
Switching frequency	3.3 Hz				
Max. perm. approach	1 m/s				
speed					
Suitable for drag chains ¹⁾	_				
Can withstand torsion ¹⁾	_				
Weld spark resistant ¹⁾	_				
Cable cross-section ¹⁾	3x0.14 mm ²				
Cable diameter D ¹⁾		4.3 ±	^{0.2} mm		
Bending radius, static ¹⁾		12	mm		
Bending radius, dynamic ¹⁾		12	mm		
Bending cycles ¹⁾					
Ambient temperature	−5 °C to +70 °C				
Protection class	IP65				
B10d value	5x10 ⁶ (wet area); 10x10 ⁶ de	ependent on current load (dry	y area)		
Certifications and approvals ²⁾	CE SE ROHS				

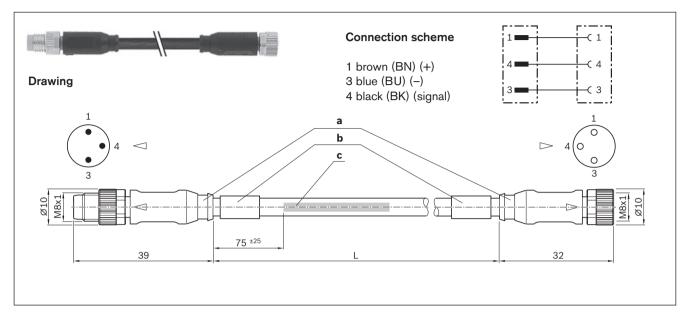
Material numbers / technical data


1) Technical data only for the cast-on connection line at the mechanical switch.

Even more performance, e.g. extension cables are offered for use in a power cable chain (see the following pages).

2) For these products no (certificate is necessary for introduction into the Chinese market.

Extension pieces


Assembled single-sided

Material numbers

Use		Extension cable				
Material number	R911344602	R911344602 R911344619 R911344620				
Designation	7000-08041-6500500	7000-08041-6501000	7000-08041-6501500			
Length (L)	5.0 m	10.0 m	15.0 m			
1. Connection type		Straight socket, M8 x 1, 3-pin				
2. Connection type	free line end					

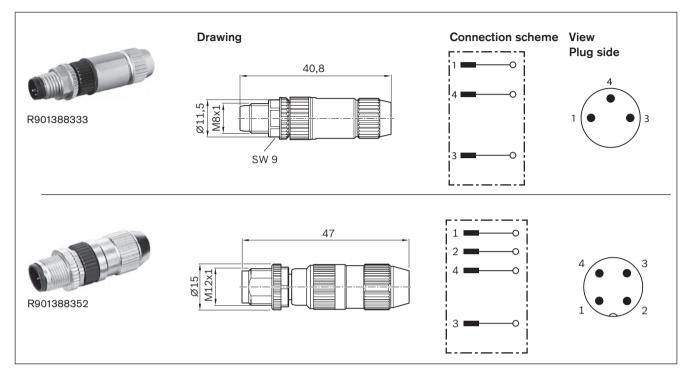
Assembled double-sided

Material numbers

Use	Extension cable						
Material number	R911344621 R911344622 R911344623 R911344624						
Designation	7000-88001-6500050	7000-88001-6500050 7000-88001-6500100 7000-88001-6500200 7000-88001-6500					
Length (L)	0.5 m 1.0 m 2.0 m 5.0						
1. Connection type	Straight socket, M8x1, 3-pin						
2. Connection type	Straight socket, M8x1, 3-pin						

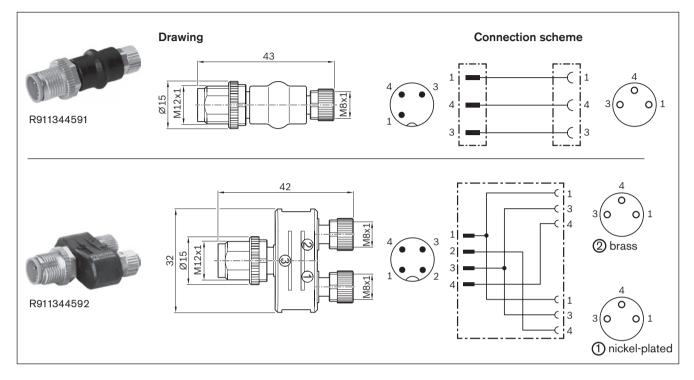
Technical data for single and double-sided pre-assembled extensions

Function indication	-		
Operating voltage indicator	-		
Operating voltage	10 - 30 V DC		
Type of cable	PUR black		
Suitable for drag chains	\checkmark		
Can withstand torsion	\checkmark		
Weld spark resistant	✓		
Cable cross-section	3x0.25 mm ²		
Cable diameter D	4.1 ^{±0.2} mm		
Bending radius, static	5xD		
Bending radius, dynamic	10xD		
Bending cycles	> 10 million		
Max. perm. travel speed	3.3 m/s - at 5 m travel distance (typ.) to 5 m/s - at 0.9 m travel distance		
Max. perm. acceleration	30 m/s ²		
Ambient temperature, fixed lay	-40 °C to +85 °C		
Ambient temperature, flexible lay	-25 °C to +85 °C		
Protection class	IP68		
Certifications and approvals			


a) Contour for corrugated tube inner diameter 6.5 mm

b) Cable grommet

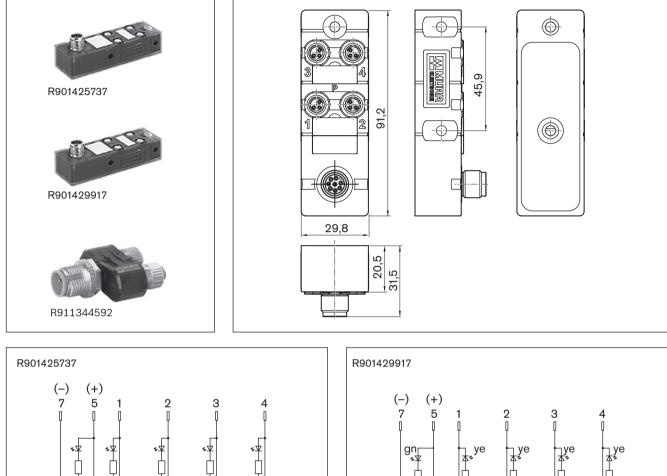
c) Cable label in accordance with labeling directive

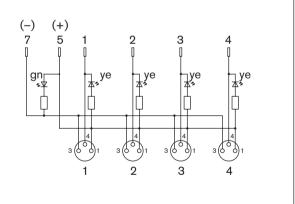

Extension pieces

Plug

Material numbers / technical data					
Use	Plug,	Plug, single			
Material number	R901388333	R901388352			
Designation	7000-08331-0000000	7000-12491-0000000			
Version	stra	aight			
Operating current per contact	max	max. 4 A			
Operating voltage	max. 32	max. 32 V AC/DC			
Connection type	Straight socket, M8x1, 3-pin	Straight socket, M12x1, 4-pin			
	Insulation displacement contact technology,	Insulation displacement contact technology			
	self-locking screw thread	self-locking screw thread			
Function indication		-			
Operating voltage indicator		-			
Connection cross-section	0.14 0	0.14 0.34 mm ²			
Ambient temperature	-25 °C t	-25 °C to +85 °C			
Protection class	IP67 (plugged in	& screwed down)			
Certifications and					
approvals	C TAUS US	- RoHS			

Adapter

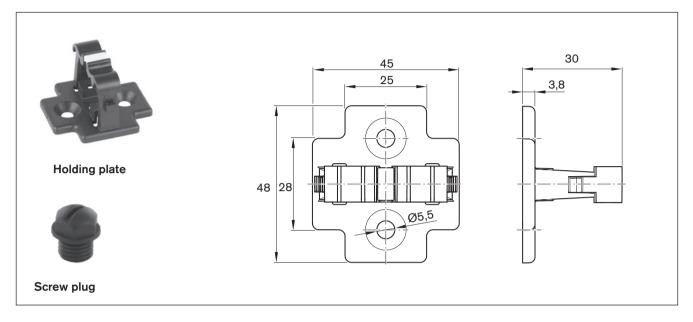



Material numbers / technical data

Use	Adapter Adapter or distributor			
Material number	R911344591	R911344592		
Designation	7000-42201-0000000	7000-41211-0000000		
Version	straight for 1 sensor	straight, for 1 - 2 sensors		
Operating current per contact	max.	4 A		
Operating voltage	max. 32 \	max. 32 V AC/DC		
1. Connection type	Straight socket, M8x1, 3-pin, self-locking screw thread	2 x straight sockets, M8x1, 3-pin self-locking screw thread		
2. Connection type	Straight plug, M12x1, 3-pin, Straight plug, M12x1, 4-pin, self-locking screw thread self-locking screw thread			
Function indication	-	-		
Operating voltage indicator	-	-		
Connection cross-section	-	-		
Ambient temperature	-25 °C to +85 °C			
Protection class	IP67 (plugged in & screwed down)			
Certifications and approvals	RoHS			

Distributors

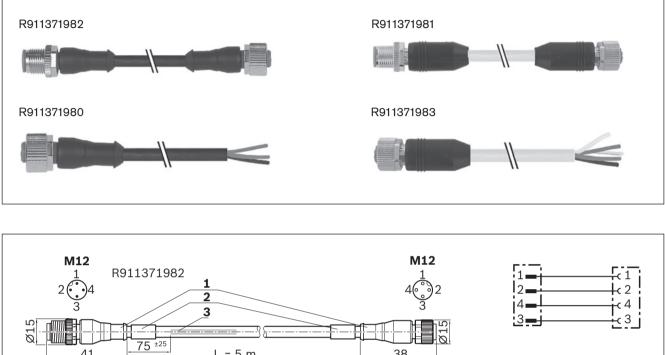
Passive distributors

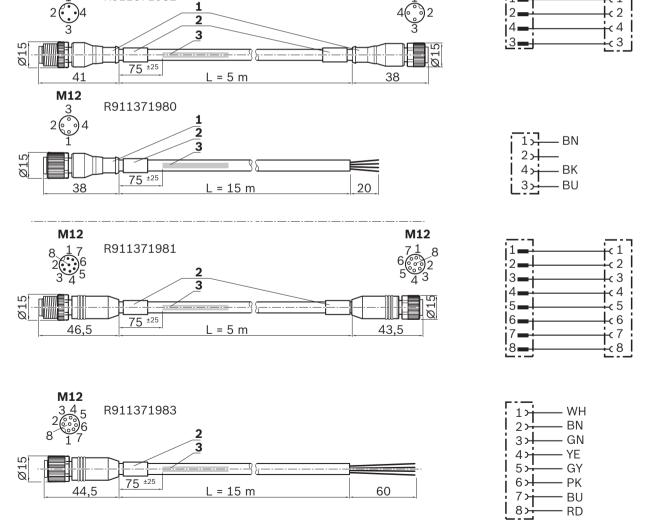


Material numbers / technical data

Use	Passive distributors			
Material number	R901425737	R901429917	R911344592	
Designation	8000-84070-0000000	8000-84071-0000000		
Version	straight, for			
Operating current per contact	max			
Operating voltage	24 \			
Switching logic	PNP	NPN		
1. Connection type	4x straight socket, M8x1, 3-p			
2. Connection type	Straight plug, M12x1, 8-pin, self-locking screw thread		See the adapter for technical	
Function indication	√		data and drawing	
Operating voltage indicator	\checkmark			
Connection cross-section	-			
Ambient temperature	−20° to +70 °C			
Protection class	IP67 (plugged in and screwed down)			
Certifications and approvals				

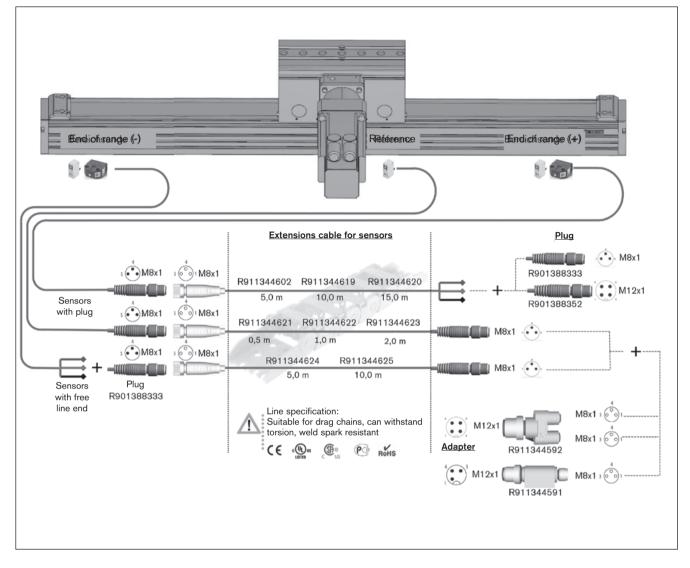
Accessories for passive distributors

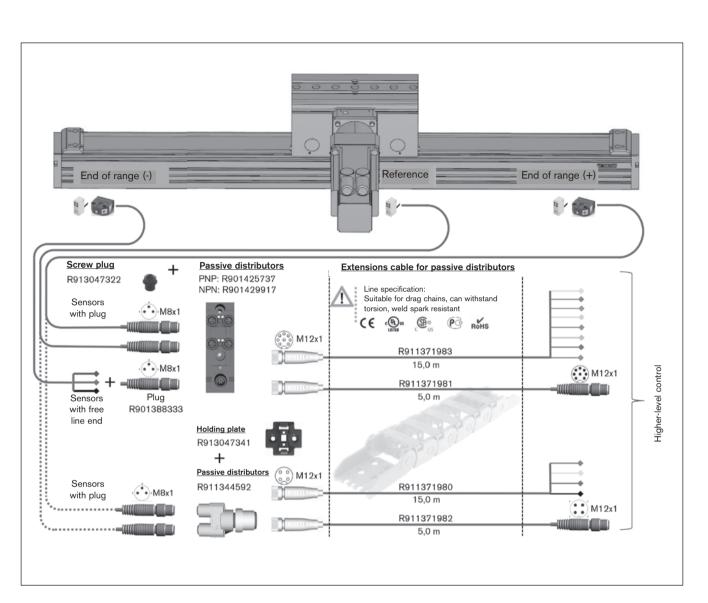



Material numbers / technical data

Use	For passive distributor R911344592	For passive distributors R901425737/ R901429917
Holding plate	R913047341	-
Designation	7000-99061-0000000	-
Packaging unit	1 pc.	-
Screw plug	-	R913047322
Designation	-	3858627
Packaging unit	-	10 pc.

Extensions for passive distributors


Extensions for passive plugs

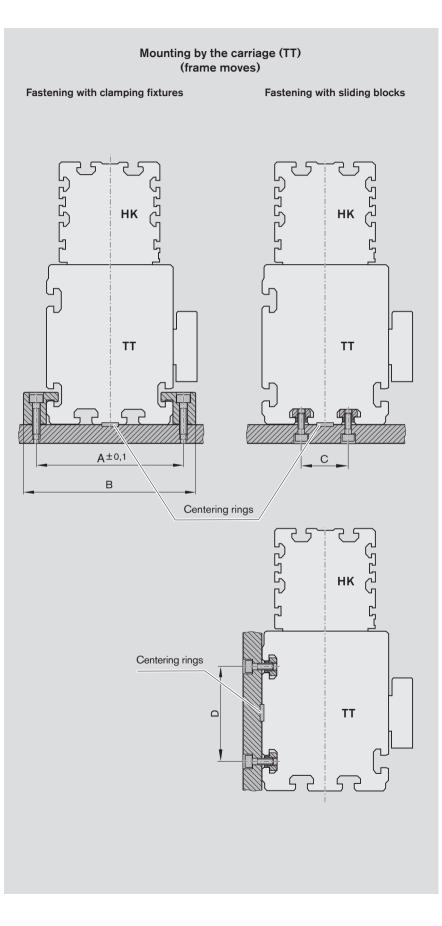


Use	Extension cable for passive distributor R911344592		Extension cable for passive distributors R901425737 / R901429917		
Material number	R911371982	R911371980	R911371981	R911371983	
Designation	7000-40021-6540500	7000-12221-6541500	7000-48001-3770500	7000-17041-3771500	
Length	5.0 m	15.0 m	5.0 m	15.0 m	
1. Connection type	Straight socket	t, M12x1, 4-pin	Straight socket	, M12x1, 8-pin	
2. Connection type	Straight plug, M12x1, 4-pin	free line end	Straight plug, M12x1, 8-pin	free line end	
Function indication		-	-		
Operating voltage indicator		-	-		
Type of cable	PUR black PUR gray			gray	
Operating voltage	30 V A	.C/DC	C		
Operating current per contact	max. 4 A p	er contact	max. 2 A per contact		
Suitable for drag chains		v	(
Can withstand torsion	\checkmark				
Weld spark resistant	\checkmark				
Cable cross-section	4x0.34 mm ² 8x0.34 mm ²			↓ mm²	
Cable diameter D	4.7 ^{±0}	^{.2} mm	6.2 ^{±0.}	. ³ mm	
Bending radius, static	≥ 5	x D			
Bending radius, dynamic	≥ 10	x D			
Bending cycles	> 10 r	nillion			
Max. perm. travel speed	3.3 m/s -	at 5 m travel distance (typ	.) to 5 m/s - at 0.9 m travel	distance	
Max. perm. acceleration	\leq 30 m/s ²				
Ambient temperature, fixed lay	-40 °C to +80 °C (90 °C max. 10 000 h)				
Ambient temperature, flexible lay		-25 °C to +80 °C (9	0 °C max. 10 000 h)		
Protection class	IP67 (plugged in & screwed down)				
Certifications and approvals					

Combination examples

Mounting

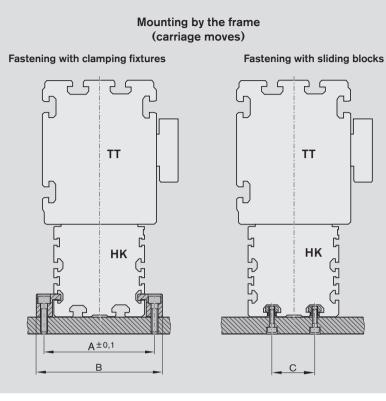
General notes


The Omega modules are mounted using various fastening elements:

- Clamping fixtures
- Sliding blocks
- Square nuts
- Screws for T-slots as per DIN 787 (not shown).
- Centering rings on carriage as positioning aids

Length dependent on base.

Mounting by the carriage (frame moves)


OBB	Α	В	С	D
	(mm)	(mm)	(mm)	(mm)
55	91	105	40	50
85	130	148	40	80
120	157	175	80	100

Mounting by the frame (HK) (carriage moves)

 ▲ Do not fix the Omega module at the end plates!
 The frame is the main load-bearing part!

OBB	Α	В	С
	(mm)	(mm)	(mm)
55	71	85	25
85	101	115	40
120	144	162	80

R0375 410 50

Ŧ

ŕ

9 R1175 290 26

9

Attachments and accessories

Mounting

Clamping fixtures

Recommended number of clamping fixtures for the installation case carriage moves (frame fixed):

- 3 pieces on side opposite motor
- _ 2 pieces on motor side

Recommended number of clamping fixtures for the installation case frame moves (carriage fixed):

Size

OBB-120

Type 2 - 4 pieces per side/m Mounting Countersink Number Dimensions (mm) Material number ISO 4762 Holes on... for Ν Α в С D Е F н **OBB-055** Carriage M6 2 65 12.5 40 17.0 10.2 21.0 7 R1175 192 04 Frame M6 2 72 11.0 50 11.5 5.3 19.3 7 R0375 510 33 **OBB-085** Carriage M8 2 68 15.0 38 27.5 18.0 30.0 9 R0375 410 52 Frame M6 2 78 14.0 50 20.0 11.3 21.0 7 R1175 390 30

50

70

19.0

19.0

Centering rings

The centering ring serves as a positioning aid and for positive locking when mounting customer attachments to the carriage. It creates a positive-locking connection with good reproducibility. Material: Steel (stainless)

Carriage

Frame

M8

M8

Mounting D D ØF ØF ØB ŕ ØA ØQ ØB ØC ØÁ Е

27.5

27.5

18.0

16.3

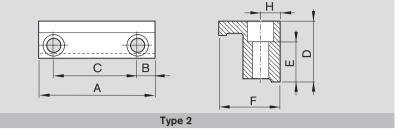
30.0

29.0

a) Customer attachment

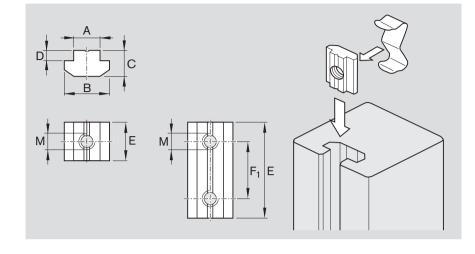
b) Centering ring

c) Carriage


2

2

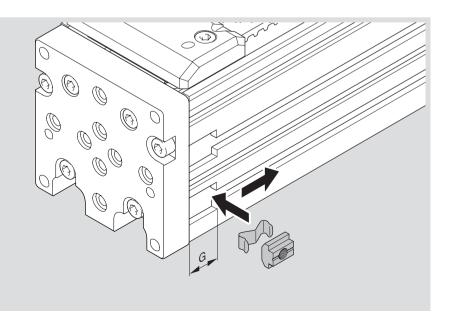
88


108

	OBB	Size	Dimensio	Dimensions (mm)								
		Ø	ØA	ØB	С	D	E	ØF	H ₁	H ₂		
		(mm)	H7/k6	H7/k6	±0.1	-0.2	+0.2		+0.2	+0.2		
Carriage	055	12	12	-	9.0	4.0	-	2.0	-	2.1	R0396 605 45	
		12 - 7	12	7	5.5	3.5	1.5	1.6	1.6	2.1	R0396 605 77	
		12 - 9	12	9	6.6	4.0	2.0	2.0	2.1	2.1	R0396 605 50	
	085,	16	16	-	11.0	6.0	-	3.0	-	3.1	R0396 605 46	
	120	16 - 12	16	12	9.0	5.0	2.0	2.0	2.1	3.1	R0396 605 51	
End plate	055,	9	9	-	6.6	4.0	-	2.0	-	2.1	R0396 605 44	
	085	9 - 5	9	5	3.4	3.5	1.5	1.6	1.6	2.1	R0396 605 48	
		9 - 7	9	7	5.5	3.5	1.5	1.6	1.6	2.1	R0396 605 49	
	120	12	12	-	9.0	4.0	-	2.0	-	2.1	R0396 605 45	
		12 - 7	12	7	5.5	3.5	1.5	1.6	1.6	2.1	R0396 605 77	
		12 - 9	12	9	6.6	4.0	2.0	2.0	2.1	2.1	R0396 605 50	

Sliding blocks and springs

The spring serves as a mounting and positioning aid. (only for OBB-085 and OBB-120)



Dime	ension	s (mm	1)			for	Material number	Material number																									
						thread	Sliding block	Spring																									
Α	В	С	D	E	F_1																												
5	9.2	4.0	1.7	10	-	M4	R0391 710 38	-																									
6	6 11.5 4.0		1.0	12	_	M4	R3447 014 01	R3412 010 02																									
				12	-	M5	R3447 015 01	R3412 010 02																									
				45	30	M5	R0391 710 09	-																									
8 16.0	16.0	6.0	2.0	16	_	M4	R3447 017 01	R3412 011 02																									
				16	-	M5	R3447 018 01	R3412 011 02																									
				16	-	M6	R3447 019 01	R3412 011 02																									
				16	-	M8	R3447 020 01	R3412 011 02																									
				50	36	M6	R0391 710 08	-																									
10	19.5	10.5	5.0	20	-	M4	R3447 012 01	R3412 009 02																									
				20	-	M5	R3447 011 01	R3412 009 02																									
					Ì					ĺ	Ì			ļ	ļ	ļ	Ì							Ì	Ì	Ì	Ì		20	-	M6	R3447 010 01	R3412 009 02
				20	-	M8	R3447 009 01	R3412 009 02																									
				90	70	M8	R0391 710 07	-																									

Overview of sliding blocks

Sliding blocks for lateral mounting on frame

Size	A	E	G
	(mm)	(mm)	(mm)
OBB-055	5	10	12
OBB-085	6	12	14
OBB-120	8	16	18

Carriage with clamping element

Carriage

For carriages with integrated clamping element there is a standard air port (1) at each end face of the carriage opposite the lube nipples. Connection on an air port is sufficient.

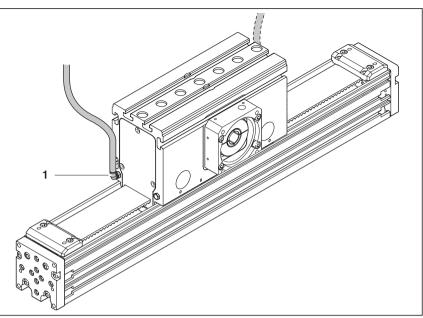
Clamping element (LKPS)

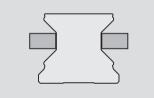
The clamping element is only used for clamping (static holding) linear axes

It is closed in deenergized state due to the spring energy accumulator (NC).

The clamping element can be used as a tried-and-tested part in conjunction with a suitable function test and in category 1 control units in accordance with DIN EN ISO 13849-1:2006.

If the risk assessment of the user specifies a Performance Level (s. Appendix A, DIN EN ISO 13849-1:2006) that requires a higher category, additional measures are required in the control technology to ensure that the start-up from the rest position is upheld or prevented safely.


For further instructions and information, please refer to documentation belonging to this product.


▲ The clamping element may only be used when the axis is at a standstill! The clamping element may not be used

as a braking unit!

Use for emergency braking of a moving mass is not permitted!

Clamping actions while the mass is moving may result in the clamping element and the linear guide being destroyed!

When the pressure drops, the clamping

profiles are pressed against the guide rail

by means of a spring energy accumulator.

A quick venting valve is required for fast

Air pressure: 0 bar

response.

Clamping by spring force

← ____

Air pressure: 5.5 - 8 bar

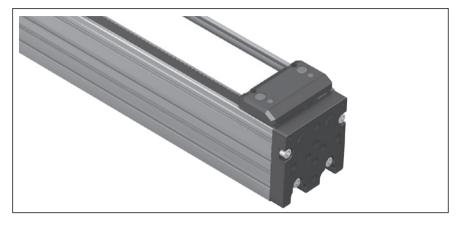
Release by air pressure

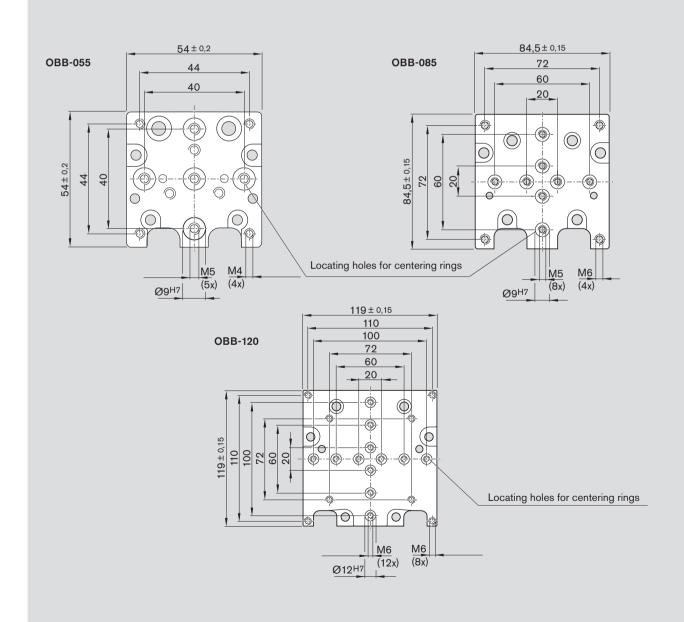
The clamping profiles are held apart by compressed air.

Allows free movement

Size	OBB-055	OBB-085	OBB-120			
Holding force ¹⁾	400 N	750 N	1300 N			
Pressure min. (release pressure)		5.5 bar				
Pressure max.		8.0 bar				
Spring energy accumulator		\checkmark				
Clamping cycles	up to 5 mill. (B10d value) ²⁾					
Braking cycles	not permitted					
Connector connection for tubing	Ø 4 mm					
Actuation		pneumatic				
theor. air consumption per cycle at 6 bar	23 cm ³	54 cm ³	74 cm ³			
Air quality	lubricated air in accordance with ISO 8573-1 class					
	filter mesh size 25 μm					

1) Static holding of the Omega module carriage or frame with axial forces up to the relevant specified value.


2) The B10d-value specifies the number of switching cycles, until 10% of the components have failed dangerously.


Attachment of additional devices

End plate for attachment

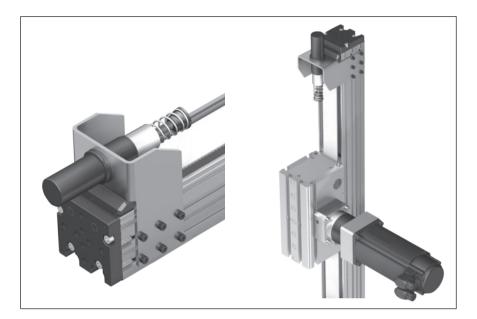
The end plates of the Omega modules feature mounting holes, threads and locating holes for attachment of additional devices.

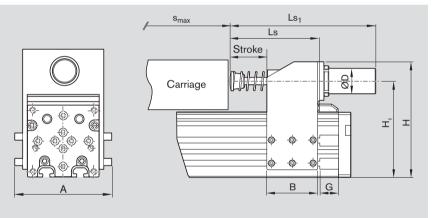
Further information on possible combinations with the Omega module OBB is available in the catalog "Connection technology for linear motion systems".

Shock absorber

Suitable shock absorbers are available for end position cushioning of the Omega module. The shock absorber serves to avoid damage in the event of uncontrolled movements. It is not suitable for continuous operation.

Notes


Follow the mounting instructions.


Shortened stroke

 $\ensuremath{\Delta}$ The maximum travel distance is shortened if a shock absorber is installed.

Note:

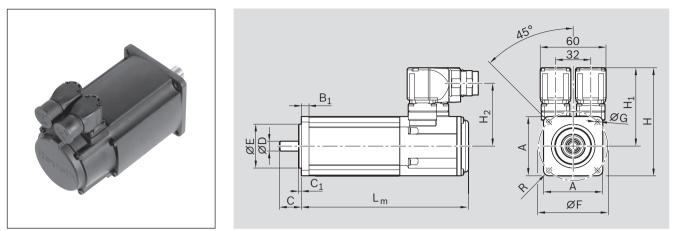
When a shock absorber is used, the maximum travel distance is reduced due to the construction (s_{max}) . For the calculation, the maximum travel distance must therefore be reduced by the value s_{red} per side or per shock absorber. If the carriage is at the end of the maximum travel distance, the front face of the carriage is on the damper head.

Mounting bracket

Size	Material number ¹⁾	Dimensions (mm)									
		A	В	Н	H ₁	L _{S²⁾}	Ls	L _{S1}	Stroke	ØD	G
OBB-055	R1175 101 17	70	56.5	113	90.5	133	133	189	50	M33 x 1.5	12
OBB-085	R1175 301 17	104	68.0	150	125.0	149	149	209	50	M33 x 1.5	14
OBB-120	R1175 601 17	145	99.0	210	210.0	206	205	246	75	M45 x 1.5	16

1) Scope of delivery: holding ring, shock absorber and mounting material

2) Carriage with clamping element


Shock absorber

Size	Max. mass to be braked	Energy absorption	s _{red} ¹⁾	Weight (Mounting bracket and shock absorber)
	(kg)	(Nm/stroke)	(mm)	(kg)
OBB-055	20	620	62	0.95
OBB-085	43	1 125	85	1.62
OBB-120	90	2 040	121	4.00

1) Reduction of the maximum travel distance of the Omega module (minimum value per side or damper)

Attachments and accessories

IndraDyn S servo motors MSK

Schematic motor illustration

Motor	Dime	Dimensions (mm)												
	A	B ₁	С	C ₁	ØD	ØE	ØF	ØG	Н	H ₁	H_2	Lm		R
					k6	j6						without	with	
												holding brake	holding brake	
MSK 040C-0600	82	8.0	30	2.5	14	50	95	6.6	124.5	83.5	69.0	185.5	215.5	R8
MSK 050C-0600	98	9.0	40	3.0	19	95	115	9.0	134.5	85.5	71.0	203.0	233.0	R8
MSK 076C-0450	140	14.0	50	4.0	24	110	165	11.0	180.0	110.0	95.6	292.5	292.5	R12

Motor data

Motor	n _{max}	Mo	M _{max}	M _{br}	J _m	J _{br}	m _m	m _{br}
	(min ⁻¹)	(Nm)	(Nm)	(Nm)	(kgm²)	(kgm²)	(kg)	(kg)
MSK 040C-0600	7 500	2.7	8.1	4	0.000140	0.000023	3.6	0.3
MSK 050C-0600	6 000	5.0	15.0	5	0.000330	0.000107	5.4	0.7
MSK 076C-0450	5 000	12.0	43.5	11	0.004300	0.000360	13.8	1.1

Motor data independent of the Omega module

- J_{br} J_m = mass moment of inertia of holding brake
- = mass moment of inertia of the motor
- = length of the motor L_{m}
- Mo = torque at standstill
- M_{br} = holding torque of holding brake when switched off

 M_{max} = maximum possible motor torque

m_m = mass of motor

- = mass of the holding brake m_{br}
- n_{max} = maximum speed

Option number ¹⁾	Motor	Material number	Version		Type designation
			Holding I	orake	
			Without	With	
86	MSK040C-0600	R911306060	х		MSK040C-0600-NN-M1-UG0-NNNN
87		R911306061		Х	MSK040C-0600-NN-M1-UG1-NNNN
88	MSK050C-0600	R911298354	Х		MSK050C-0600-NN-M1-UG0-NNNN
89		R911298355		Х	MSK050C-0600-NN-M1-UG1-NNNN
92	MSK076C-0450	R911318098	Х		MSK076C-0450-NN-M1-UG0-NNNN
93		R911315713		Х	MSK076C-0450-NN-M1-UG1-NNNN

Notes

1) From "Configuration and ordering" table

Version

- Plain shaft with shaft seal

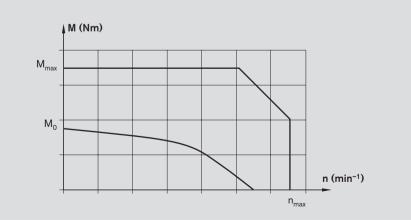
- Multi-turn absolute encoder M1 (Hiperface)
- Cooling system: natural convection
- Protection class IP65 (housing)
- With or without holding brake

Recommended motor/controller combination

Motor Controller MSK 040C-0600 HCS 01.1E-W0008 MSK 040C-0600 HCS 01.1E-W0018 MSK 050C-0600 HCS 01.1E-W0028 MSK 076C-0450 HCS 01.1E-W0054

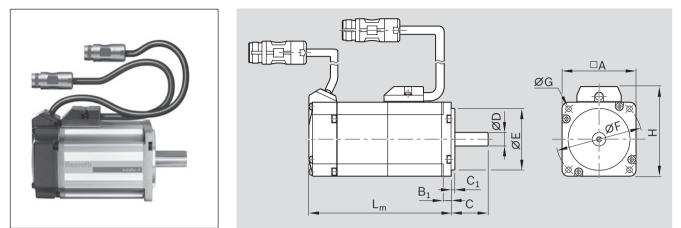
The motors can be supplied complete with controllers and control units. For further

motor types and more information on motors, controllers and control units, please


refer to the following Rexroth catalogs on drive technology:

- Automation systems and control components, R999000026

- Rexroth IndraDyn S Synchronous Motors MSK, R911296288


- Drive System Rexroth IndraDrive, R999000018

Torque/speed characteristic (schematic)

Attachments and accessories

IndraDyn S servo motors MSM

Schematic motor illustration

Motor	Dimens	imensions (mm)										
	A	B ₁	C	C ₁	ØD	ØE	ØF	ØG	Н	L _m		
					k6	j6				Without holding brake	With holding brake	
MSM 031C-0300	60	6.5	30	3	14	50	70	4.5	73	98.5	135.0	
MSM 041B-0300	80	6.0	35	3	19	70	90	6.0	93	112.0	149.0	

Motor data

Motor	n _{max}	Mo	M _{max}	M _{br}	J _m	J _{br}	m _m	m _{br}
	(min ⁻¹)	(Nm)	(Nm)	(Nm)	(kgm²)	(kgm²)	(kg)	(kg)
MSM 031C-0300	5 000	1.30	3.80	1.27	0.0000260	0.0000018	1.20	0.50
MSM 041B-0300	4 500	2.40	7.10	2.45	0.0000870	0.0000075	2.30	0.80

- J_{br} = mass moment of inertia of holding brake
 - $M_{\rm br} =$
- J_m = mass moment of inertia of the motor
- $L_m = \text{length of the motor}$
- M_0 = torque at standstill
- M_{br} = holding torque of the holding brake (normally closed)
- M_{max} = maximum possible motor torque
- $m_m = mass of motor$

 $m_{br}~=~mass~of~holding~brake$

 $n_{max} = maximum speed$

Option number ¹⁾	Motor	Material number	Version Holding bi	ake	Type designation
			Without	With	
138	MSM 031C-0300	R911344215	Х		MSM 031C-0300-NN-M5-MH0
139		R911344216		Х	MSM 031C-0300-NN-M5-MH1
140	MSM 041B-0300	R911344217	Х		MSM 041B-0300-NN-M5-MH0
141		R911344218		Х	MSM 041B-0300-NN-M5-MH1

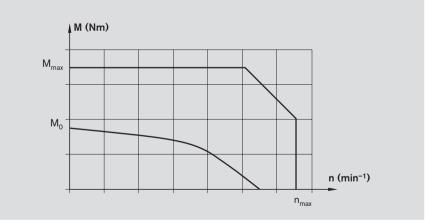
1) From "Configuration and ordering" table

Version:

- Plain shaft without shaft seal
- Mutiturn absolute encoder M5 (20 bit, absolute encoder function only available with buffer battery)
- Cooling system: natural convection
- Protection class IP54 (shaft IP40)
- With or without holding brake
- Metal round connector M17

Notes

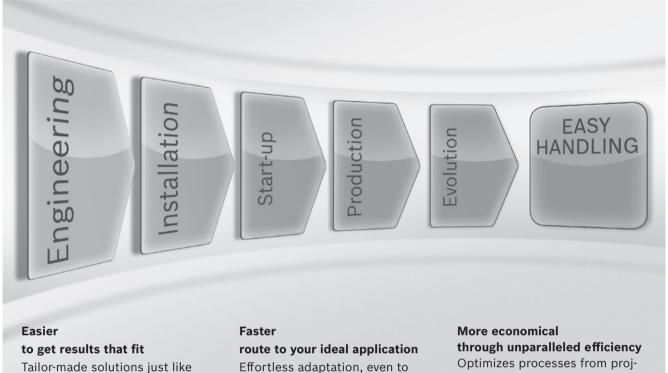
The motors can be supplied complete with controllers and control units. For further motor types and more information on motors, controllers and control units, please refer to the following Rexroth catalogs:


- Drive System Rexroth IndraDrive, R999000018
- Automation systems and control components, R999000026
- Rexroth IndraDyn S Synchronous Motors MSM R911329337

Recommended motor/controller combination

Motor	Controller
MSM 031C-0300	HCS 01.1E-W0009
MSM 041B-0300	HCS 01.1E-W0013

Torque/speed characteristic (schematic)


EasyHandling

The perfect system solution for every application

Efficient production processes are the key to your success in the marketplace. Today's environment, defined by rapid change and short product cycles, demands flexible systems with an optimal design and configuration. EasyHandling gives you the tools you need to automate your handling applications with greater ease, speed, and efficiency. EasyHandling is more than just a modular collection of mechanical components; it takes an evolutionary step forward by providing an all-inclusive system solution – our best solution for your requirements.

EasyHandling – Easier. Faster. More Economical.

that – with support throughout.

route to your ideal application Effortless adaptation, even to future requirements – fast and flexible scalability.

on resources.

ect planning through to opera-

tions - with significant savings

Engineering – up to 70% faster

EasyHandling tools help users right from the component selection stage, proposing solutions with all the necessary information on parts lists, technical data and CAD drawings.

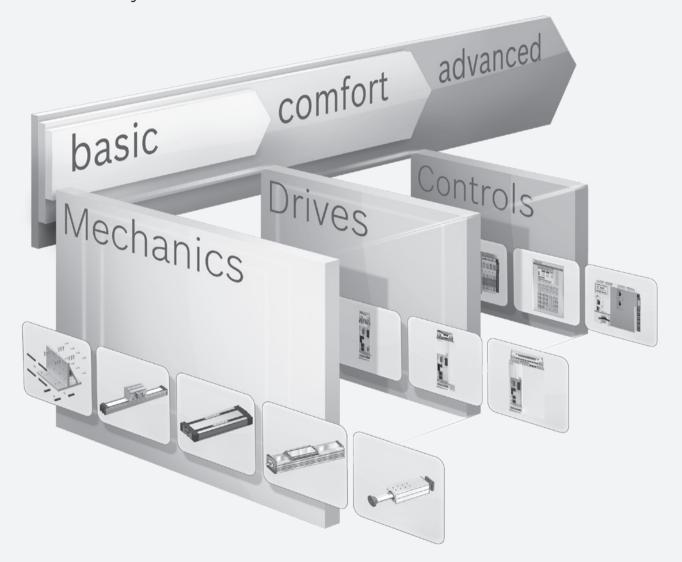
Installation - saves up to 60% on time

Thanks to positive-locking interfaces, the mechanical components are perfectly aligned and accurately connected right away.

Start-up - reduces your effort by up to 90%

With the smart start-up assistant EasyWizard, parameterization and configuration become child's play. Your handling system will be ready to go in just a few clicks.

Production – more economical and more efficient


Rexroth enhances the system effectiveness still further with smart application tools: The drive controller software outputs maintenance-related messages to the user based on operating hours and travel to help schedule servicing at the right intervals. The result: longer life and reduced risk of failure.

Future developments – continuous improvement

Prepare for future market developments now: One of the great features of EasyHandling systems is their systematic openness. The flexibility of the mechanical and electrical components allows you to adapt quickly and efficiently to new production requirements. EasyHandling

EasyHandling – more than just a kit of components

The modular system concept that ideally builds on itself

basic – Made-to-measure mechanics

EasyHandling basic contains all the mechatronic components you need to build complete, **single- or multi-axis systems** to match your individual needs. All of the component interfaces are systematically standardized, making it possible to combine them at will. Practical tools and aids make selection and configuration even easier.

comfort - Getting started even faster

EasyHandling comfort expands the Basic component range by adding **powerful servo drives with multiple protocol capability**. The universal, smart control units are ideally suited for a variety of handling tasks. Unique: with the **EasyWizard start-up assistant**, linear systems are ready to use after entering just a few product-specific parameters.

advanced –

Controls for demanding requirements

With the **freely scalable, high-performing motion logic control system**, EasyHandling advanced makes configuration and handling even easier. Predefined functions covering more than 90 percent of all handling applications eliminate the need for lengthy programming.

For more information about EasyHandling, see the brochure "EasyHandling – more than just a kit of components" R999000044.

Operating conditions

Normal operating conditions

Ambient temperature No passing below the dew point	0 °C 40 °C	9
Load	≤ 0.2 C	
	OBB-055 ≥ 110 mm	
Travel distance s _{min} 1)	OBB-085 ≥ 160 mm	
	OBB-120 ≥ 135 mm	
Contamination	Not permitted	

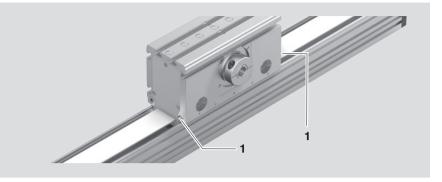
1) Minimum travel distance to ensure a reliable lubrication distribution.

Design notesA Moved parts:
Safety devices and guards necessaryA For vertical installations:
Arresting devices necessary to protect
against falling loadsRequired and supplementary
documentationFor further instructions and information, please refer to documentation
belonging to this product. "Safety Instructions for Linear Motion Systems"
- You can find PDF files of these documents in the Internet at
www.boschrexroth.com/mediadirectoryWe would also be pleased to send you the documents.
If you are unsure about using this product, please contact Bosch Rexroth.

Lubrication

Lubrication notes

Omega modules receive basic lubrication with Dynalub 510 and are only designed for grease lubrication using a manual grease gun. The only maintenance required is relubrication of the integrated Ball Rail System via one of the two funnel-type lube nipples (1).


Lubrication point

1 Funnel-type lube nipple DIN 3405 Type D1

Lubricants

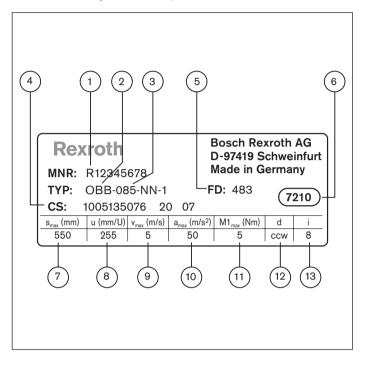
For lubricant quantities and intervals, see "Instructions for Omega Modules".

Grease	Material number
Dynalub 510	R3416 037 00
(Bosch Rexroth)	(Cartridge 400 g)
NLGI grade 2 lithium-based high-perfor-	
mance grease as per DIN 51818	
(KP2K-20 as per DIN 51825)	
Alternative greases	
Elkalub GLS 135 / N2	
(Chemie-Technik)	
Castrol Longtime PD2	
(Castrol)	

 \triangle Do not use greases containing solid particles (e.g. graphite or MoS₂)!

 \triangle For lubrication in short-stroke applications (travel path < s_{min}), please consult us.

Documentation


Standard report Option 01

The standard report serves to confirm that the checks listed in the report have been carried out and that the measured values lie within the permissible tolerances. Controls listed in the standard report:

- functional checks of mechanical components
- functional checks of electrical components
- design is in accordance with order confirmation

Parameterization (commissioning)

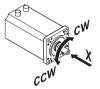
Besides reference information for the production of the linear motion system, there are also technical parameters specified for commissioning on the nameplate.

Type designation Size Customer information

Material number

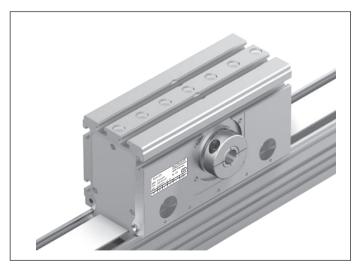
1 2

3


4

7

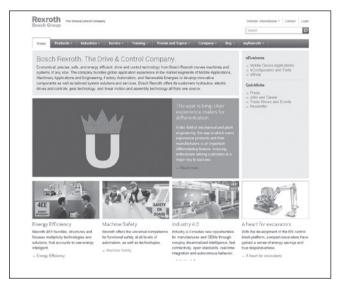
8


9

- 5 Date of manufacture
- 6 Manufacturing location
 - $s_{max} = max.$ travel range (mm)
 - u = lead constant (mm/rev)
 - $v_{max} = max. speed (m/s)$
- 10 a_{max} = max. acceleration (m/s²)
- 11 $M1_{max} = max$. drive torque at motor journal (Nm)
- **12** d = rotational direction of the motor to move in positive direction

Clockwise Counter clockwise 13 i = gear ratio

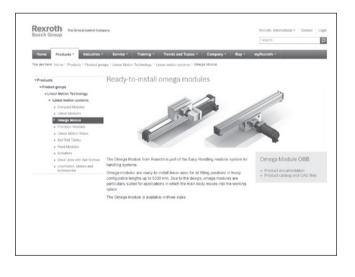
For Omega modules, the nameplate is mounted on the carriage on the drive side. (See fig.)



Further information

Bosch Rexroth homepage:

http://www.boschrexroth.com



Omega module

product information:

http://www.boschrexroth.com/en/xc/products/product-groups/ linear-motion-technology/linear-motion-systems/omega-module/index

Ordering example OBB-085

Configuration and ordering

	product name, length 085-NN-1, mm	Guideway	Drive		Carriage		
			Reductio	on	L _{ca} = 260 mm	L _{ca} = 308 mm	
Versio	on ²⁾				without	with	
			i = 1	i = 5 i = 8	Clamping	g element	
with drive (MA), without gear i = 1	MA01, hollow shaft with clamping hub	01	01	_	01	02	
with gear (MG), Angular planetary gearbox WPG	MG01 MG02 MG03 MG04 MG04 MG04	01	_	10	01	02	
	MG10						

Mark of the selection area to the decision about version

Selected option that is to be entered at "Inquiry/Order" in the the order form at the end of the catalog

Ordering data	Option	Description
Omega module		
Short product name, length	OBB-085-NN-1, 910 mm	Length 910 mm
Version	MG01	Omega module with angular planetary gearbox, mounted as shown in fig. MG01
Guideway	01	Ball Rail System
Drive	10	Toothed belt drive
Carriage	01	Carriage with length $L_{ca} = 260$ mm (without clamping element)
Motor attachment	33	with angular planetary gearbox, $i = 5$, for motor MSK 050C
Motor	89	Motor MSK 050C with brake
1. Switch	61	PNP NC (frame moves)
2. Switch	65	Mechanical switch (frame moves)
Socket-plug	17	Socket-plug on the switch side (frame moves)
Control strip	42	Two control strips on the frame (frame moves)
Documentation	01	Standard report

Motor att Speed reduction i =	Attacl ki MG01	nt nment t ³⁾ MG02 MG04	for motor	Motor Without	with rake	Switching system ⁴⁾	Documentation	
_	0	0	_		00	Without switch and without cable duct Carriage moves Switch: – PNP NC	00	
i = 5 i = 8	33 35	43 45	MSK 050C	88	89	- PNP NO - Mechanical Cable duct ¹⁾ Socket-plug	73 75 20 17 36	
i = 8	34	44	MSM 041B	140	141	Switching angle Frame moves Switch:		01
	3	0	MSK 050C	88	89	- PNP NC - PNP NO - Mechanical Socket-plug Two control strips	61 63 65 17 41	
			В	140	141			

Inquiry/order form

Find your local contact person here:

www.boschrexroth.com/adressen

Rexroth – Omega Modules		
Ordering example		
Ordering data	Option	Description
Omega module OBB-085		
Short product name, length		OBB-085-NN-1, 910 mm
Version	MG01	Omega module with angular gear, mounted as shown in fig. MG01
Guideway	01	Ball Rail System
Drive	10	Toothed belt drive
Carriage	01	Carriage with length $L_{ca} = 260$ mm (without clamping element)
Motor attachment	33	with angular planetary gearbox, $i = 5$, for motor MSK 050C
Motor	89	Motor MSK 050C with brake
1. Switch	61	Proximity switch, PNP NC (frame moves)
2. Switch	65	Mechanical switch (frame moves)
3. Switch	65	Mechanical switch (frame moves)
Cable duct	00	without cable duct
Socket-plug	17	Socket-plug (frame moves)
Control strip	41	Two control strips (frame moves)
Documentation	01	Standard report
To be completed by the customer: Inquiry / Order Omega module Short product name:		
Comments: Sender Company: Address:		Department: Telephone:

The Drive & Control Company

MECHANICA EQUIPMENT GROUP®

Wangara, WA +61 8 6314 1111 support@automation-control.com.au automation-control.com.au

R999001179 (2016-05) © Bosch Rexroth AG 2016 Subject to revisions! The data specified above only serves to describe the product. Due to continuous development of our products a statement concerning a certain condition or suitability for a certain application from this information can not be derived. The information does not constitute the user's own judgment and verification. It should be noted that our products are subject to a natural process of aging and wear and tear.